

Twin Michelson interferometer with Einstein–Podolsky–Rosen squeezing

OzGrav—

Daniel Gould¹, Vaishali Adya², Min Jet Yap¹, Dennis Wilken³, Jonas Junker³, Sheon Chua¹, Bram Slagmolen¹, Robert Ward¹, David McClelland¹, Michèle Heurs³

- 1. Australian National University.
- 2. KTH Royal Institute of Technology
- 3. Max Planck Institute for Gravitational Physics

Key Ideas:

- Twin Sensors
- Correlated signals
- Entangled Noise
- Combined Heterodyne Readout

Challenges:

- Optical losses
- Phase control
- Technical noises
- Signal calibration

Want to show :

- Audio band SNR improvement
- Coherent signal interactions
- Heterodyne Readout

Squeezing

Degenerate Squeezed state

Non-Degenerate Squeezed State (EPR)

Squeezing

<u>Details</u>

- Type 1
- Dual resonant bowtie cavity
- 1064 FSR of 850 MHz

Degenerate Squeezed state

Non-Degenerate Squeezed State (EPR)

Experimental Layout:

Picking Phase:

Choices with phase:

- Set arbitrary phase lock between upper and lower sidebands
- Choose a optical local oscillator lock point
- Choose a electronic local oscillator demodulation phase

Result of I and Q demodulation:

Sum of amplitude quadrature and difference of phase quadrature

Sum of phase quadrature and difference of amplitude quadrature

<u>Details</u>

- 20 uW of power in each Michelson signal field
- 20 nW of power leaked through each Michelson as an offset from dark fringe
- Michelson contrast >99.7%

Expected levels of squeezing:

$$\text{Common Loss} = \frac{L_1 + L_2}{2}$$

Differential Loss =
$$\frac{|L_1 - L_2|}{2}$$

Expected levels of squeezing:

Common Loss =
$$\frac{L_1 + L_2}{2}$$

Dephasing = $\frac{|L_1 - L_2|}{2}$

Expected levels of squeezing:

Details

- 26% common Loss 3% differential loss
 OR
 path 1 = 23% loss, path 2 =29% loss
- Approx 140mrad phase noise

Interesting points:

- Coherent noise addition/subtraction
- Avoid signals on Heterodyne local oscillator
- I and Q measurements simultaneously
- Choice of sum or difference readout

Things to do:

- Improve losses
 - Combining cavity
 - Faraday
 - Mode matching
- Calibrate sensitivity
- Squeezing phase lock
- Full readout phase control

Adapted from T. Zhang et al. 2021 Phys. Rev. Lett. 126, 221301

Quantum-Gravity Detector

Adapted from S. T. Pradyumna et al. 2020 CommunicationsPhysics 3,104 & S. M. Vermeulen et al. 2021 Classical andQuantumGravity38,085008

0.5m Rac

2250

Thanks for listening