
A phase-insensitive table-top quantum filter

A. Dmitriev1, J. Smetana1, H. Miao1,2, D. Martynov1

1. Institute for Gravitational Wave Astronomy
University of Birmingham, UK

2. Tsinghua University, Beijing, China

May 23, 2023
GWADW 2023, Elba



Motivation

• The modern and future planned gravitational-wave detectors
are limited by the photon shot noise within their most
sensitive range

• Tackling the shot noise is vital for the high frequency detector
upgrades

• Phase-sensitive techniques for quantum noise mitigation (use
of squeezed states) are already in use and pushed to
technological limits – unlike phase-insensitive amplification

• Compared to phase-sensitive techniques, phase-insensitive
amplification is relatively less understood both experimentally
and theoretically
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Shot noise• Gain-bandwidth product (or
integral sensitivity
enhancement) remains
constant:

FSR∫

0

χ2(ω)dω = const.

• The reason is the energetic
quantum limit or quantum
Cramer-Rao bound

• Can be overcome only with
quantum techniques

• Quantum amplification can
be phase-sensitive
(squeezing) or
phase-insensitive (this
talk!)



Phase-insensitive amplification in the filter

Filter cavity for signal recycling:

• Phase-insensitive quantum
amplifier G added to the filter
cavity:

â
G +

b̂

√
|G |2 − 1

n̂†
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b̂ = Gâ+

(√
|G |2 − 1

)
n̂†
a

Carlton M. Caves (1982). “Quantum limits
on noise in linear amplifiers”. In: Physical
Review D 26.8, pp. 1817–1839

• Optimal “amplifier” Gopt compensates
for the phase shift introduced by the
main cavity with bandwidth γ0:

Gopt(iω) =

√
iω + γ0
iω − γ0

• No added noise because |Gopt| ≡ 1
(no amplification!)

• Similar to the detuned filter cavity
case but works at all frequencies

• Gopt is unstable

• In a finite frequency band, Gopt can
be approximated with a stable
function to any precision.

Artemiy Dmitriev, Haixing Miao, and Denis Martynov
(2022). “Enhancing the sensitivity of interferometers
with stable phase-insensitive quantum filters”. In:
Phys. Rev. D 106, p. 022007
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PT-symmetric optomechanical realization

• A mechanical oscillator is coupled
to the recycling cavity

• Blue-detuned pump field turns it
into an amplifier for the signal

• Special tuning of the coupling
strength (“PT symmetry”):

coupling rate
Mechanical↔SRC

= coupling rate
SRC↔Arm

• SNR is enhanced as compared to
the passive case

• System is fully causal and stable
Xiang Li, Maxim Goryachev, et al. (2020). “Broadband
sensitivity improvement via coherent quantum feedback
with PT symmetry”. arXiv: 2012.00836 [quant-ph]

Xiang Li, Jiri Smetana, et al. (2021). “Enhancing
interferometer sensitivity without sacrificing bandwidth
and stability: Beyond single-mode and resolved-sideband
approximation”. In: Physical Review D 103.12

https://arxiv.org/abs/2012.00836


How to scale it down to table-top?

Scaling the design down to the
table-top version is challenging!

• Optical coupling rate
increases with the length of
the main cavity decreasing

• Additional thermal noise

• Locking

• Mode matching



Solution: use Si3N4 membranes

frequency 251 m s–1 a–1, with a hole radius of r = 0.26a. At the same
time, the design allows a straightforward definition via photolitho-
graphy, given that the tether width is still above 5 μm even for the
smallest a. Evidently, the phonon dispersion is altered dramatically
by the in-plane (d.c.) stress, which relaxes to an anisotropic and
inhomogeneous equilibrium distribution that must be simulated
(Fig. 1b) or measured35 beforehand.

We characterized the membranes’ out-of-plane displacements
using a home-built laser interferometer with a sampling spot that
could be raster scanned over the membrane surface (Methods and
Barg et al.36). Figure 1c shows the displacement spectrum obtained
when averaging the measurements from a raster scan over a (200 μm)2

square inside the defect, while the a = 160 μm membrane is only
thermally excited. The spectral region outside ∼1.41–1.68 MHz is
characterized by a plethora of unresolved peaks, which can be attrib-
uted to modes delocalized over the entire membrane. In stark con-
trast, within this spectral region only a few individual mode peaks
were observed, providing direct evidence for the existence of a
bandgap. Furthermore, its spectral location agrees with simulations
to within 2%.

Extracting the amplitude of the first peak at fA ≈ 235 m s–1 a–1

allows mapping out the (root mean square) displacement pattern
of the first mode when raster scanning the probe (Methods).
Figure 1a (right) shows an image constructed in this way, magnified
on the defect region. The pattern resembles a fundamental mode of
the defect, with no azimuthal nodal lines, and its first radial node
close to the first ring of the holes that define the defect. Outside
the defect, the displacement follows the hexagonal lattice symmetry,
but decays quickly with increasing distance from the centre. This is
expected because of the forbidden wave propagation in the phono-
nic bandgap, and leads to a strong localization of the mode to
the defect.

Ultrahigh quality factors
To assess the mechanical quality of the mode, we subjected the
defect to a second, amplitude-modulated ‘excitation’ laser beam,
and continuously monitored the defect’s motion at the mode fre-
quency by lock-in detection of the interferometer signal. When
the excitation laser was abruptly turned off, we observed the ring-
down of the mechanical mode (Methods). Under a sufficiently
high vacuum (p ≲ 10–6 mbar), but at room temperature, the ring-
down can last for several minutes at megahertz frequencies.
Figure 1d shows an example of an E mode with f = 777 kHz and
amplitude ringdown time 2τ = 87.7 ± 0.8 s. This corresponds to
Q = 2πfτ = (214 ± 2) × 106 and Qf = (1.66 ± 0.02) × 1014 Hz.

To corroborate and explain this result, we have embarked on a
systematic study of more than 400 modes in devices of varying
thickness and size (rescaling the entire pattern with a, but
leaving the stress redistribution of Fig. 1b unchanged). Figure 2
shows a subset of quality factors and Qf products measured in
five different modes of ∼20 devices with varying size a = 87
… 346 μm, but a fixed thickness h = 35 nm. Clearly, the Qf products
exceed those of trampoline resonators by more than an order of
magnitude, and reach deeply into the region of Qf > 6 × 1012 Hz.
They also consistently violate the ‘quantum’ (Akhiezer) damping
limit of crystalline silicon, quartz and diamond, which fundamen-
tally precludes mechanical resonators made from these materials
from reaching beyond Qf ≈ 3 × 1013 Hz at room temperature
(refs 24–26,28).

Our data, in contrast, do not seem to be limited by Akhiezer
damping. Indeed, a crude estimate following Ghaffari et al.28

indicates QAkhf ≈ O(1015 Hz) for silicon nitride. Furthermore, as
the phonon relaxation times are much faster than the mechanical
oscillation period, we would expect a constant Qf, rather than the
Q ∝ f−2 trend discernible in our data. Thermoelastic damping,
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Figure 1 | Device characterization. a, Micrograph of a silicon nitride membrane patterned with a phononic crystal structure (left) and measured
out-of-plane displacement pattern of the first localized mode A (right) of a device with the lattice constant a = 160 μm. b, Simulation of the stress
redistribution in a unit cell of the hexagonal honeycomb lattice (left) and the corresponding first Brillouin zone (right). c, Simulated band diagram of a
unit cell (left) and measured Brownian motion in the central part of the device shown in a. Localized modes A–E are colour coded, and the peak around
1.5 MHz is an injected tone for calibration of the displacement amplitude. d, Ringdown measurements of A (red) and E (blue) modes of two membrane
resonators with a = 346 μm.
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Yeghishe Tsaturyan et al. (2017). “Ultracoherent
nanomechanical resonators via soft clamping and

dissipation dilution”. In: Nature nanotechnology 12.8,
pp. 776–783

• Qm ≈ 109 @ 10 K

• m = (10−12...10−10) kg

• Low reflectivity

• Need to use
membrane-in-the-middle layout

• Mode-matching telescope in
the filter cavity

• Advanced LIGO-style locking

• Works for T/Qm ≲ 10−7 K

Jiri Smetana et al. (2022). “Design of a tabletop
interferometer with quantum amplification”. arXiv:

2210.04566 [quant-ph]

https://arxiv.org/abs/2210.04566


Parameters
Parameter Symbol Value

Main cavity length L0 4.1m
Coupling mirror
transmissivity

T0 30 ppm

Main cavity loss Y0 10 ppm
Filter cavity length Lf 2m
Filter cavity band-
width

γf /2π 30 kHz

Filter cavity input
coupler transmis-
sivity

Tf 0.5%

Filter cavity loss Yf 2000 ppm
Membrane eigen-
frequency

ωm/2π 300 kHz

Motional mass m 40 ng
Membrane thick-
ness

h 50 nm

Membrane trans-
missivity

Tm 0.8

Membrane temper-
ature

T 10K

Input pump power Pin 70mW
Filter cavity power Pf 3.4W
Pump frequency
offset

ωp/2π 303 kHz

• Qm ≈ 109 @ 10 K

• m = (10−12...10−10) kg

• Low reflectivity

• Need to use membrane-in-the-middle
layout

• Mode-matching telescope in
the filter cavity

• Advanced LIGO-style locking

• Works for T/Qm ≲ 10−7 K

Jiri Smetana et al. (2022). “Design of a tabletop
interferometer with quantum amplification”. arXiv:

2210.04566 [quant-ph]

https://arxiv.org/abs/2210.04566


Noise budget
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Experimental progress

• Classical demonstration of the effect at room temperature is
underway

• Standard commercial Si3N4 membranes, f0 = 229 kHz

• Filter cavity installed, coupled to a membrane, and locked

• Membrane vibrations excited by detuning the cavity
resonance, measured Q ≈ 8× 105 for f0.

Next steps:

• Add the sensing cavity

• Demonstrate stability and sensitivity enhancement

• Proceed to the cryogenic quantum version
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We do other stuff!
• Axion interferometer

(see Alex’s poster on LIDA)

• New detector topologies
(Teng’s talk on Thursday)

• Cryo-silicon optomechanics

• 6D and Compact 6D

• Optical coatings etc.



Auxiliary slides



PT symmetry



Optimal gain

nq

aout

rf,tf r0,t0 x
main
cavity

filter
cavityG

n̂q
tIM + G + Zf tCM + Zs

rIM −rIM
√
|G|2 − 1

n̂†
a1

n̂†
a2

√
|G|2 − 1

−rCM rCM +
x̂

ZstCM+ZfG+tIM+
âout

Transfer functions:

T [x̂ → âout](s) = Tx̂(s),

T [n̂q → âout](s) = Tn̂q (s),

etc.

Spectral density:

x̂ ↔ Sxx , n̂q ↔ Svv ,

n̂†
a1 ↔ Svv , n̂

†
a1 ↔ Svv ,

all uncorrelatedSNR(ω) = χ2(ω) Sxx(ω)/Svv (ω),

χ2(ω) =
|Tx̂(iω)|2∣∣Tn̂q (iω)

∣∣2 + |Tn̂a1(iω)|
2 + |Tn̂a2(iω)|

2

• χ depends on G

• What G would
maximise χ?

Double mode approximation:

Zs(s) = e−sτs ≈ 1− sτs + s2τ 2
s /2,

Zf (s) = e−sτf ≈ 1− sτf + s2τ 2
f /2,

Gopt(s) =

√
s + γs
s − γs

|Gopt(s)| ≡ 1

γs — bandwidth of the sensing

cavity



Optimal gain
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Gopt(s) =

√
s + γs
s − γs

|Gopt(s)| ≡ 1

• What does it mean?

• Reflection off the sensing cavity:

rs(s) =
Z 2
s (s)− rCM

1− rCMZ 2
s (s)

≈ s − γs
s + γs

• Round-trip in the filter cavity:

TRTf
(s) = rIMG 2(s)Z 2

f (s)rs(s)

• Optimal amplifier
Gopt compensates for
the phase shift
introduced by the
arm cavity.

• No added noise
because |Gopt| ≡ 1



Sensitivity levels



PT-symmetric optomechanical filters

• Optomechanical amplifier:

GOM(s) = 1− 4g2τf ωm

(s + γm)(s + γm − 2iωm)

• System and all parts are causal and stable. However, MIMO
analysis required as the amplifier’s mode can no longer be ignored.



Sensitivity levels, PT filter



Silicon nitride (Si3N4) membranes

frequency 251 m s–1 a–1, with a hole radius of r = 0.26a. At the same
time, the design allows a straightforward definition via photolitho-
graphy, given that the tether width is still above 5 μm even for the
smallest a. Evidently, the phonon dispersion is altered dramatically
by the in-plane (d.c.) stress, which relaxes to an anisotropic and
inhomogeneous equilibrium distribution that must be simulated
(Fig. 1b) or measured35 beforehand.

We characterized the membranes’ out-of-plane displacements
using a home-built laser interferometer with a sampling spot that
could be raster scanned over the membrane surface (Methods and
Barg et al.36). Figure 1c shows the displacement spectrum obtained
when averaging the measurements from a raster scan over a (200 μm)2

square inside the defect, while the a = 160 μm membrane is only
thermally excited. The spectral region outside ∼1.41–1.68 MHz is
characterized by a plethora of unresolved peaks, which can be attrib-
uted to modes delocalized over the entire membrane. In stark con-
trast, within this spectral region only a few individual mode peaks
were observed, providing direct evidence for the existence of a
bandgap. Furthermore, its spectral location agrees with simulations
to within 2%.

Extracting the amplitude of the first peak at fA ≈ 235 m s–1 a–1

allows mapping out the (root mean square) displacement pattern
of the first mode when raster scanning the probe (Methods).
Figure 1a (right) shows an image constructed in this way, magnified
on the defect region. The pattern resembles a fundamental mode of
the defect, with no azimuthal nodal lines, and its first radial node
close to the first ring of the holes that define the defect. Outside
the defect, the displacement follows the hexagonal lattice symmetry,
but decays quickly with increasing distance from the centre. This is
expected because of the forbidden wave propagation in the phono-
nic bandgap, and leads to a strong localization of the mode to
the defect.

Ultrahigh quality factors
To assess the mechanical quality of the mode, we subjected the
defect to a second, amplitude-modulated ‘excitation’ laser beam,
and continuously monitored the defect’s motion at the mode fre-
quency by lock-in detection of the interferometer signal. When
the excitation laser was abruptly turned off, we observed the ring-
down of the mechanical mode (Methods). Under a sufficiently
high vacuum (p ≲ 10–6 mbar), but at room temperature, the ring-
down can last for several minutes at megahertz frequencies.
Figure 1d shows an example of an E mode with f = 777 kHz and
amplitude ringdown time 2τ = 87.7 ± 0.8 s. This corresponds to
Q = 2πfτ = (214 ± 2) × 106 and Qf = (1.66 ± 0.02) × 1014 Hz.

To corroborate and explain this result, we have embarked on a
systematic study of more than 400 modes in devices of varying
thickness and size (rescaling the entire pattern with a, but
leaving the stress redistribution of Fig. 1b unchanged). Figure 2
shows a subset of quality factors and Qf products measured in
five different modes of ∼20 devices with varying size a = 87
… 346 μm, but a fixed thickness h = 35 nm. Clearly, the Qf products
exceed those of trampoline resonators by more than an order of
magnitude, and reach deeply into the region of Qf > 6 × 1012 Hz.
They also consistently violate the ‘quantum’ (Akhiezer) damping
limit of crystalline silicon, quartz and diamond, which fundamen-
tally precludes mechanical resonators made from these materials
from reaching beyond Qf ≈ 3 × 1013 Hz at room temperature
(refs 24–26,28).

Our data, in contrast, do not seem to be limited by Akhiezer
damping. Indeed, a crude estimate following Ghaffari et al.28

indicates QAkhf ≈ O(1015 Hz) for silicon nitride. Furthermore, as
the phonon relaxation times are much faster than the mechanical
oscillation period, we would expect a constant Qf, rather than the
Q ∝ f−2 trend discernible in our data. Thermoelastic damping,
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Figure 1 | Device characterization. a, Micrograph of a silicon nitride membrane patterned with a phononic crystal structure (left) and measured
out-of-plane displacement pattern of the first localized mode A (right) of a device with the lattice constant a = 160 μm. b, Simulation of the stress
redistribution in a unit cell of the hexagonal honeycomb lattice (left) and the corresponding first Brillouin zone (right). c, Simulated band diagram of a
unit cell (left) and measured Brownian motion in the central part of the device shown in a. Localized modes A–E are colour coded, and the peak around
1.5 MHz is an injected tone for calibration of the displacement amplitude. d, Ringdown measurements of A (red) and E (blue) modes of two membrane
resonators with a = 346 μm.
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• Qm ≈ 109 @ 10 K

• m = (10−12...10−10) kg

af1 af3

af4af2
rf

ωm, γm

G (ω) = af 3/af 4

≈ 1 +
2i g2ωmtf

ω2 − iγmω − ω2
m

g ≈
(

rmt
2
mPf ω0

(1− rf rm)2mcLf ωm

)1/2



Full experimental layout



Future experimental layout
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Parameters
Parameter Symbol Value

Main cavity length L0 4.1m
Coupling mirror
transmissivity

T0 30 ppm

Main cavity loss Y0 10 ppm
Filter cavity length Lf 2m
Filter cavity band-
width

γf /2π 30 kHz

Filter cavity input
coupler transmis-
sivity

Tf 0.5%

Filter cavity loss Yf 2000 ppm
Membrane eigen-
frequency

ωm/2π 300 kHz

Motional mass m 40 ng
Membrane thick-
ness

h 50 nm

Membrane trans-
missivity

Tm 0.8

Membrane temper-
ature

T 10K

Input pump power Pin 70mW
Filter cavity power Pf 3.4W
Pump frequency
offset

ωp/2π 303 kHz



Optical stiffening
Parameter Symbol Value

Main cavity length L0 4.1m
Coupling mirror
transmissivity

T0 30 ppm

Main cavity loss Y0 10 ppm
Filter cavity length Lf 2m
Filter cavity band-
width

γf /2π 30 kHz

Filter cavity input
coupler transmis-
sivity

Tf 0.5%

Filter cavity loss Yf 2000 ppm
Membrane eigen-
frequency

ωm/2π 300 kHz

Motional mass m 40 ng
Membrane thick-
ness

h 50 nm

Membrane trans-
missivity

Tm 0.8

Membrane temper-
ature

T 10K

Input pump power Pin 70mW
Filter cavity power Pf 3.4W
Pump frequency
offset

ωp/2π 303 kHz

• Pump field must be tuned to the
mechanical resonant frequency

• Including frequency shift due to
the optical spring

∆ωOS =
rmt

2
mg

2ωm

4(1− rf rm)2(γ2
f + ω2

m)

∆ωOS ≈ 2π × 3.0 kHz
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Locking
Parameter Symbol Value

Main cavity length L0 4.1m
Coupling mirror
transmissivity

T0 30 ppm

Main cavity loss Y0 10 ppm
Filter cavity length Lf 2m
Filter cavity band-
width

γf /2π 30 kHz

Filter cavity input
coupler transmis-
sivity

Tf 0.5%

Filter cavity loss Yf 2000 ppm
Membrane eigen-
frequency

ωm/2π 300 kHz

Motional mass m 40 ng
Membrane thick-
ness

h 50 nm

Membrane trans-
missivity

Tm 0.8

Membrane temper-
ature

T 10K

Input pump power Pin 70mW
Filter cavity power Pf 3.4W
Pump frequency
offset

ωp/2π 303 kHz

• aLIGO-style locking

• Resonating a sideband at the first
FSR of the filter cavity (75 MHz)

• Non-resonant sideband at 10
MHz

Sensing matrix:

Demodulation
frequency

Main cavity Filter cavity

75MHz 1 -1/3
10MHz -1 0



Loss-induced noise
Parameter Symbol Value

Main cavity length L0 4.1m
Coupling mirror
transmissivity

T0 30 ppm

Main cavity loss Y0 10 ppm
Filter cavity length Lf 2m
Filter cavity band-
width

γf /2π 30 kHz

Filter cavity input
coupler transmis-
sivity

Tf 0.5%

Filter cavity loss Yf 2000 ppm
Membrane eigen-
frequency

ωm/2π 300 kHz

Motional mass m 40 ng
Membrane thick-
ness

h 50 nm

Membrane trans-
missivity

Tm 0.8

Membrane temper-
ature

T 10K

Input pump power Pin 70mW
Filter cavity power Pf 3.4W
Pump frequency
offset

ωp/2π 303 kHz

• Noise induced by loss in the main
cavity:

Sϵ
main(Ω) =

4

Teff
Y0

• Noise induced by loss in the filter
cavity:

Sϵ
filter(Ω) =

2(γ2
0 +Ω2)τ

Teff γ0
Yf



Thermal noiseParameter Symbol Value

Main cavity length L0 4.1m
Coupling mirror
transmissivity

T0 30 ppm

Main cavity loss Y0 10 ppm
Filter cavity length Lf 2m
Filter cavity band-
width

γf /2π 30 kHz

Filter cavity input
coupler transmis-
sivity

Tf 0.5%

Filter cavity loss Yf 2000 ppm
Membrane eigen-
frequency

ωm/2π 300 kHz

Motional mass m 40 ng
Membrane thick-
ness

h 50 nm

Membrane trans-
missivity

Tm 0.8

Membrane temper-
ature

T 10K

Input pump power Pin 70mW
Filter cavity power Pf 3.4W
Pump frequency
offset

ωp/2π 303 kHz

• Thermal noise can be mapped to
an equivalent optical loss in the
main cavity:

Y eq
main =

kBγ0
ℏg 2

(
T

Qm

)
• for T/Q = 10−8 K, we get

Y eq
main ≈ 70 ppm
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