Straylight suppression

with tunable coherence in high precision interferometers

GWADW Elba 2023

Daniel Voigt, André Lohde, Oliver Gerberding

Institute for Experimental Physics Universität Hamburg

 $23^{\rm rd}$ May 2023

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Outline

- lengths matching
- detuning
- power build-up
- locking

related paper in review

Outlook

time-domain simulation

 plans for improvement
 recycling cavities

experimental setup

- Michelson interferometer
- adding cavities

Motivation

Figure: LIGO Hanford noise budget [1]

- scattered light is major limitation at low frequencies
- non stationary noise

メロト メタト メヨト メヨト

Figure: LIGO Hanford noise budget [1]

scattered light is major limitation at low frequencies
 non stationary noise

イロト イボト イヨト イヨ

Tunable Coherence

- phase modulation at GHz
- \blacksquare "random" noise as modulation sequence c_0
 - ightarrow pseudo white-light interferometer

A D F A B F A B F A B F

Tunable Coherence

- phase modulation at GHz
- \blacksquare "random" noise as modulation sequence c_0
 - ightarrow pseudo white-light interferometer
- \blacksquare chips of c_0 generated as 0 or 1
 - \longrightarrow modulation $c_{\pm 1}(t)$ of 0 or π

$$E(t) = E_0 e^{i(\omega t + \varphi + c_0(t)\pi)} = c_{\pm 1}(t) E_0 e^{i(\omega t + \varphi)}$$

modulation sequence

- pseudo-random-noise (PRN) sequence as modulation input c₀
- *m-sequence* of length l_{seq}

 $... \underline{1011100}_{"random"} \underline{10111001011100}_{log1011100} \underline{1011100}_{lseq} 101...$

・ ロ ・ ・ 日 ・ ・ モ ・ ・ 日 ・ うへの

modulation sequence

- pseudo-random-noise (PRN) sequence as modulation input c₀
- *m-sequence* of length l_{seq}
 - $... \underline{1011100}_{"random"} \underline{101110010111100}_{log1011100} \underline{1011100}_{lseq} 101... \\ l_{seq}$

influence on MI output

- small scale dependent on chip length d_{chip}
- large scale dependent on autocorellation of PRN sequence

イロト イボト イヨト イヨ

- ightarrow tunable coherence
- \rightarrow *re-coherence* length d_{coh}

D. Voigt, A. Lohde, O. Gerberding

23rd May 2023 5

Distance examples

				$f_{\rm mod}=1~{\rm GHz}$		$f_{\rm mod} = 10~{\rm GHz}$	
laser frequency		1064 nm	l_{seq} :	31 chips	16 383 chips	31 chips	16 383 chips
PRN chip	d_{chip}	[cm]		29.9 cm	29.9 cm	2.99 cm	2.99 cm
PRN sequence	d_{coh}	[m]		9.29 m	4911.50 m	0.93 m	491.15 m

Simulation results

Simulation results

Michelson Interferometer

イロト イボト イヨト イヨ

Outline

- lengths matching
- detuning
- power build-up
- locking

Outlook

time-domain simulation
 plans for improvement

recycling cavities

experimental setup

- Michelson interferometer
- adding cavities

23rd May 2023 8

Cavity response Equations for fields

modulated input field

$$E_{in}(t)=E_0e^{i(\omega t+\varphi+c_0(t)\pi)}=c_{\pm 1}(t)E_0e^{i(\omega t+\varphi)}$$

random behavior for e.g. reflected field

$$\begin{split} E_{\mathrm{refl}}(t) = & r_1 E_0 e^{i(\omega t + \varphi)} \bigg[c_{\pm 1}(t) \\ & - \frac{t_1^2}{r_1^2} \sum_{n=1}^\infty c_{\pm 1}(t - n\tau) \left(r_1 r_2 e^{-i\omega\tau} \right)^n \bigg] \end{split}$$

and equivalently for other fields

Cavity response Equations for fields

modulated input field

$$E_{in}(t)=E_0e^{i(\omega t+\varphi+c_0(t)\pi)}=c_{\pm1}(t)E_0e^{i(\omega t+\varphi)}$$

random behavior for e.g. reflected field

$$\begin{split} E_{\mathrm{refl}}(t) = & r_1 E_0 e^{i(\omega t + \varphi)} \bigg[c_{\pm 1}(t) \\ & - \frac{t_1^2}{r_1^2} \sum_{n=1}^\infty c_{\pm 1}(t - n\tau) \left(r_1 r_2 e^{-i\omega\tau} \right)^n \bigg] \end{split}$$

and equivalently for other fields

recoherence for sequence matching cavity

$$\text{if } c_{\pm 1}\!(t\!-\!n\tau) = c_{\pm 1}\!(t) \ \forall n,t \text{:}$$

$$\begin{split} _{\mathrm{refl}}(t) &= r_1 c_{\pm 1}(t) E_0 e^{i(\omega t + \varphi)} \left[1 - \frac{t_1^2}{r_1^2} \sum_{n=1}^{\infty} \left(r_1 r_2 e^{-i\omega\tau} \right)^n \right] \\ &= c_{\pm 1}(t) E_0 e^{i(\omega t + \varphi)} \left[r_1 - t_1^2 r_2 e^{-i\omega\tau} \sum_{n=0}^{\infty} \left(r_1 r_2 e^{-i\omega\tau} \right)^n \right] \\ &= E_{in}(t) \left[r_1 - \frac{r_2 t_1^2 e^{-i\omega\tau}}{1 - r_1 r_2 e^{-i\omega\tau}} \right] \end{split}$$

E

イロト イヨト イヨト イヨト 三日

Length matching

- random behavior if sequence does not fit
- cavity length locked to recoherence length
- modulation frequency locked to laser frequency

Length matching

10 12 LFSR length n

10

 $f_{\rm ev} = 10.00 \, {\rm GHz}$

 $f_{hit} = 15.00 \text{ GHz}$

f_{hit} = 20.00 GHz

Detuning

- no difference if cavity is locked to sequence length
- shown left: over-coupled
- same for under-coupled & impedance matched
- tuning range limited due to modulation
- modulation frequency should be locked to laser frequency

イロト イポト イヨト イヨ

Power build-up

full build-up for integer multiple of sequence length

イロト イポト イヨト イヨ

- halved build-up for e.g. 1.5 sequence lengths
- FWHM depending on modulation frequency
 - $\rightarrow\,$ in μm to mm range
 - ightarrow e.g. for 10 GHz around 1776 wavelengths
- sensitivity depending on cavity finesse

PDH - error signal

- normal error signal for matched cavity
- local oscillator phase not adjusted for each simulation
 - ightarrow probably cause for observed steeper flanks
- locking might require additional unmodulated laser

イロト イポト イヨト イヨ

Outline

simulation of cavity fields

- lengths matching
- detuning
- power build-up
- locking

Outlook

time-domain simulation

plans for improvement

recycling cavities

experimental setup

- Michelson interferometer
- adding cavities

Outlook

Simulation

future needs

- recycling cavities & scattered light
- more generalized setup
- higher precision without performance penalty
- performance increase

A D F A B F A B F A B F

Outlook

Simulation

future needs

- recycling cavities & scattered light
- more generalized setup
- higher precision without performance penalty
- performance increase

conceptual ideas

use modular setup

- ightarrow define each optic and its "connections"
- \longrightarrow iterate through setup and propagate fields in time-steps
- for FINESSE compatibility, use similar input method \rightarrow run both simulations parallel

Outlook Experiment

moved into the lab

prepared supporting infrastructure

started setup for testing

adjust interferometer and measure

experiments in preparation

tunable coherence & dual-port quadrature read-out

23rd May 2023 16

Conclusion

simulation of cavity fields

- lengths matching is crucial
- detuning is possible
- power build-up works normal if lengths match
- locking probably needs an unmodulated laser

related paper in review

Outlook

- time-domain simulation
 - recycling cavities
 - more general setup
 - FINESSE compatibility
- experimental setup
 - moved into lab

イロト イボト イヨト イヨ

 Michelson interferometer setup in preparation

D. Voigt, A. Lohde, O. Gerberding

Straylight suppression with tunable coherence in high precision interl

23rd May 2023 17

Bibliography

Craig Cahillane. https://ccahilla.github.io/. URL: https://ccahilla.github.io/ (visited on 03/10/2022).

Melanie Ast. "Quantum-dense metrology for subtraction of back-scatter disturbances in gravitational-wave detection". PhD thesis. Universität Hannover, 2017.

・ロト ・日 ・ ・ ヨ ・