LIGO-G2301014

Mariner: The Cryogenic Upgrade of the 40m Prototype Interferometer

R. Adhikari, S. Appert, <u>K. Arai</u>, R. Bhatt, A. Brooks, F. Salces-Carcoba, M. Laxen, Y. Michimura, J. Sanchez, B. Shapiro¹, C Wipf

Caltech / Johns Hopkins Applies Physics Laboratory¹

Caltech 40m Prototype

The prototype's mission: integration test of the state-of-the-art detector technology

Technology demonstration for generations of GW detectors FP/PRFPMI iLIGO, RSE aLIGO Current: BHD A+ (-> poster)

-> Voyager: Cryogenic prototype

Roles of the prototype interferometer

- Increase feasibility and readiness of the main detector
- Accumulate experience with known/unknown issues
- Focus: "Integration"

Less complicated subset of the main detector

Mariner: Prototype of Voyager

Key technologies "Si test mass / Radiative cooling / 2050nm Laser"

aLIGO(A+) λ =1064nm, 125W 4km DRFPMI FD-SQZ / BHD / OMC SiO₂ 40kg Room temp Quad SUS

Voyager 2050nm, ~150W <-Same <-Same Si~200kg Radiative cooling 123K <-Same bottom 2 cooled

Mariner <-Same, ~10W 40m FPMI (Phase I) None (Phase I) <-Same ~6kg <-Same **Double SUS** bottom 2 cooled

Laser / Optics at 2050nm

Less common than 1064nm but solutions exists

Multiple options for laser: ECDL / EC-OPA / LD-pump Tm, Ho:YLF Laser / TDF laser 2050nm semiconductor laser for LIDAR NASA JPL Double stage TDF amp (10mW->10W) CSIR-CGCRI

PSL combo

PMC / IMC / others: SiO₂ optics EOM / AOM / Faradays: Off-the-shelf

Photodiodes

ex-InGaAs PD: works at 2um / to be tested ex-InGaAs QPDs: to be manufactured High QEPD: not in the scope at the moment

2.05 1/2125 hutterfly components with integrated oppical isofator

NASA JPL

Glass & Ceramic Research Institute (CSIR-CGRI)

Solution for Locking: Arm Length Stabilization

"Arm stabilization before locking" Using an aux laser locked to the cavity Equivalence: Fractional fluctuations $(d\nu/\nu = dL/L)$ How to relate $d\nu/\nu$ at 1550nm and 2050nm Frequency comb Transfer cavity (dichroic rigid cavity)

Si Test Mass / Coating

- Substrate: φ15cm x t14cm, ITM FZ / ETM MCZ
- Dichroic coating Phase I: Conventional SiO₂/Ta₂O₅, Phase II: aSi
- Barrel Coating for high emissivity
 Black Si + SiO₂ reinforcement layer
 Investigation with wafers
 for robustness and mech. loss

Cryogenics

Radiative test mass cooling Double cryo shields / LN2+cryo cooler add on to the existing vacuum chambers shields extended into the arm tubes

R. Bhatt's talk on Fry afternoon

Cryogenic suspension

50cm double stage suspension emulates the last two stage of Voyager quad

Priority targets: Cooling demonstration, Handling of pos and angular drift Operation of the cooled interferometer

Steel wire for Phase I Si ribbons / Si blades later

Cryogenic suspension

Preliminary radiative cooling test 6cm single pendulum in a low profile cryostat "Aquadag" (carbon based paint) Cooled down to ~120K in ~80h

OSEMs (LED/PD functions well at 70 readout response ir

Status / Summary

Mariner: three key technologies - Si test mass / radiative cooling / 2050nm laser

Technologies available

- Integrated as an interferometer

Installation

- after balanced homodyne test concludes

- staging the components in the labs