A structural study of the properties of amorphous silica coatings for low internal friction optics

Laura Silenzi on behalf of Perugia-Camerino Virgo group

Istituto Nazionale di Fisica Nucleare

Gravitational-Wave Advanced Detector Workshop- GWADW 2023 – Elba, May 23rd

Overview

- Coating thermal noise for interferometric mirrors
- Investigation of the structure with different techniques
 - Experiments and results
- Conclusions

Coating thermal noise

EPJ Web of Conferences 182, 02003 (2018)

Coating thermal noise (CTN) dominates midband frequency sensitivity (40-350 Hz)

CTN related to "intrinsic" mechanical loss (fluctuation-dissipation theorem)

Mirror coatings

- Alternating materials with high/low refractive index
- Current adVirgo coatings: amorphous Ti(20%):Ta₂O₅
 (n_H=2.07) and amorphous SiO₂ (n_L= 1.45)
- Deposition and post-deposition treatments

G.Cagnoli on behalf of VCR&D collaboration

M. Granata et al., *Physical Review Materials* **2**, 053607 (2018) A. Amato, *Low Thermal Noise Coating for New Generation Gravitational-Wave Detectors, Univ. de Lyon* (2019)

 $\begin{array}{c} (pe.) \\ = 0 \\ =$

A. Amato et al., 2018 J. Phys.: Conf. Ser. 957 012006

Reduction of mechanical losses at:

- Increasing annealing time (fixed temperature T= 500°C)
- Increasing annealing temperature (fixed time t= 10 hours)

Structure by Raman spectroscopy:

- Shift of the main band to lower frequencies → less dense structure
- Relative area of D2/D1 bands → decrease in the 3-fold ring population

A. Amato et al., 2018 J. Phys.: Conf. Ser. 957 012006

M. Granata et al., *Physical Review Materials* **2**, 053607 (2018) A. Amato, *Low Thermal Noise Coating for New Generation Gravitational-Wave Detectors, Univ. de Lyon* (2019)

AIM OF THIS STUDY

Possible correlation between mechanical and structural properties of silica, investigating the structure at different length scales and with techniques complementary to Raman

Samples:

- SiO₂ coatings deposited by IBS (LMA, Lyon)
- Si and SiO₂ substrates
- Annealing in air 10 hours up to 1000°C
- Coating nominal thickness: 500-720 nm

LUCIA beamline Si K-edge (1839 eV)

Techniques:

- X-Ray Absorption Spectroscopy
 - XANES (oxidation state and medium range order)
 - EXAFS (local order)
- Grazing Incidence X-Ray Diffraction (structure, crystallization)
- X-Ray Reflectivity (density)

 Fourier Transform Infrared Spectroscopy (short and medium range order)

X-ray Absorption Spectroscopy

• Syncrothron based technique

GWADW 2023

 X-ray absorption coefficient μ as a function of the photon energy across the (photoelectric) absorption edge of a specific atom in the material

Elba, May 23rd

X-ray Absorption Spectroscopy

Fluorescence

No differences in the result for different sampling depths

Change occurs within the whole coating depth

XANES

- Shift of the white line (~0.2 eV) at increasing annealing temperature
- Change in post-edge region: the two marked features merge into a single one
- Independent of the sampling depth
- Independent of the substrate (Si or SiO₂)

XANES: densified silica glasses

complete interpretation

EXAFS

GWADW 2023

Grazing Incidence X-Ray Diffraction

Same changes (height and peak position) versus density observed

for permanently densified silica glasses

- Collected at University of Padova
- Cu energy (λ = 1.54 Å)
- Patterns: 2θ range 10°-50°
- No detectable peaks of SiO₂ crystalline polymorphs \rightarrow samples remain amorphous after annealing

C.Z. Tan, J. Arndt, Jour. Of Non-Cryst. Solids 249 (1999) 47-50

M. Bazzan

G. Favaro

Elba, May 23rd

M. Bazzan G. Favaro

14

X-Ray Reflectivity

• Films too thick \rightarrow only density estimation from the critical angle

Fourier Transform Infrared Spectroscopy

- Shift of the fundamental band , correlated to Si-O-Si bond angle, at higher frequencies with increasing annealing temperature → Medium range order structural rearrangement, evident at 800°C
- The shoulder at ~1020 cm⁻¹ may suggest the presence of some structural defects (OH groups or Si-O⁻ non bridging oxygens) for low annealing temperatures

Fourier Transform Infrared Spectroscopy

- Shift of the fundamental band , correlated to Si-O-Si bond angle, at higher frequencies with increasing annealing temperature → Medium range order structural rearrangement, evident at 800°C
- The shoulder at ~1020 cm⁻¹ may suggest the presence of some structural defects (OH groups or Si-O⁻ non bridging oxygens) for low annealing temperatures

Conclusions

- SiO₂ coatings have been investigated for different annealing temperatures and with several complementary techniques
- Spectral changes occur in the XANES region, associated to medium range order effects
- The local structure remains unchanged from EXAFS analysis
- No crystallization peaks of SiO₂ polymorphs with annealing, so the samples remain amorphous. Moreover, a change in the peak of amorphous SiO₂ at 22° is observable
- All the samples exhibit a decrease of the density with respect to the annealing temperature, with XRR
- Medium range order rearrangement is observable from FTIR. The presence of possible defects is under study

Less dense structure at increasing annealing temperature Local structure unchanged

Collaborators

A. Trapananti F. Travasso

M. Granata C. Michel L. Pinard

B. BraccoS. CorezziA. Di MicheleP. SassiH. Vocca

M. Bazzan G. Favaro

