Background Rejection with Deep Learning Models and Classical Approach

Atul Prajapati

Deep Learning Models

- 1) Deep Neural Network
- Weights of the network is optimised iteratively
- Result is the output of the last layer.

- 2) Random Forest Classifier
- It can build each tree independently.
- Results are combined at the end of the process.

- 3) Gradient Boosted Classifier
- It builds one tree at a time.
- It combines results along the way.

Classical Approach:

• Applying cuts on all the variables that I used for training.

Signal Events $(N_{signal}) = No.$ of NR events from the variable passing the cut **Bkg Events** $(N_{bkg}) = No.$ of ER events from the variable passing the cut **Signal efficiency** $(S_{eff}) = N_{signal}/N_{total}$ **Bkg. Efficiency** $(B_{eff}) = N_{bkg}/N_{total}$ **Bkg. Rejection** = N_{total}/N_{bkg}

• **Variables**: thin_track, SDCD, CylThick, ChargeUnif, LAPA, MaxDen, eta, curlyness, SC_nhits, SC_integral, SC_length, SC_width, delta, slimness

Dataset

Models trained on whole dataset

- Background Rejection is plotted with 40% and 50% signal efficiency in each energy bin.
- All the variables shown in the plot show the background rejection with classical approach.

Bkg. Rejection only for Variable_5

Deep Learning models are trained on the whole dataset.

Variables with decreasing rejection at higher energy

Variable_9: thin_track, SDCD, CylThick, ChargeUnif, LAPA, curlyness, SC_nhits, SC_length, SC_width

Variables with increasing rejection at higher energy

Variable_5: MaxDen, eta, SC_integral, delta, slimness

Bkg. Rejection vs Sig. Eff.

Deep Learning models are trained on the whole dataset.

Feature Importance

Models trained on Variable_5

Bkg. eff. Vs Sig. eff. And Feature importance for Variable_5

Models trained on Variable_9

Bkg. eff. Vs Sig. eff. And Feature importance for Variable_9

Training and Testing Scores for all 3 models

- All the 3 models were trained on all 3 different datasets namely: Variable_5, Variable_9 and variable_5+ Variable_9.
- Score of training and testing of all the models is plotted for the different datasets.

Mask-RCNN studies

Mask-RCNN Model

(a) An example of an input image as given to sMask-RCNN to process

(b) A simulated neutrino interaction overlaid on cosmic ray muons from data, labeled by sMask-RCNN

Figure 3: Network Architecture for Mask-RCNN in MicroBooNE.

Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN https://arxiv.org/pdf/2201.05705.pdf

Data for Mask-RCNN

a) Digitized Image (512x512)

Digitized image w/o noise

Selecting the cluster using OpenCV

- c) Pedestal subtracted (Blurred -> Thresholded)
- Shape Attributes
 - Polygon
 - Coordinates of polygon
 - bbox
 - area
- Region Attributes
 - ER or NR (category)
 - Name & index

Annotations are done using OpenCV18

Input for Network

Target for Network

Preliminary Result:

Input Image

Prediction

Prediction

✤ 60 keV ER track.

ER 0.906

60 keV ER track

Input Image

Prediction

60 keV NR track

Input Image

Prediction

0.984

Predictions