

K⁺ Production Study with MicroBooNE for the Future Proton Decay Search at DUNE

Natsumi Taniuchi – University of Cambridge ntaniuchi@hep.phy.cam.ac.uk

Supervisor: Prof Melissa Uchida mauchida@hep.phy.cam.ac.uk

1

About Myself

- Born in Tokyo, Japan.
- Bachelor degree in Physics (Apr 2015 Mar 2019) The University of Tokyo, Tokyo, Japan.
- Master degree in Physics (Apr 2019 Mar 2021) The University of Tokyo, Tokyo, Japan.
 "Search for proton decay into charged antilepton and eta meson in Super-Kamiokande"
- Started my ESR position as PhD student at University of Cambridge from September 2021.

Attended Courses, Conferences, and Workshops

- Lecture for modern particle physics (Oct. 2021 – Mar 2022)
- Machine learning course (Oct. 2021 – Mar 2022)
- First-year report/exam (Aug. 2022)
- LArSoft Workshop (1 Nov. – 3. Nov 2021)
- MicroBooNE Analysis Retreat Workshop (9 May – 13 May 2021)
- Annual Intense Workshop (2 Feb. - 4 Feb. 2022)
- Summer Students at Fermilab and other US Laboratories, Joined online (18– 20 Jul. 2022)

- DUNE Collaboration Meeting (virtual) (24 Jan. - 28 Jan. 2022)
- MicroBooNE Collaboration Meeting (virtual) (7 Feb. – 11 Feb. 2022)
- Cavendish Graduate Conference, poster presentation (25 Nov. 2021)
- MicroBooNE Collaboration Meeting (2 May. – 6 May. 2022)
- DUNE Collaboration Meeting (16 May. – 20 May. 2022)

LArTPC Experiments: DUNE and MicroBooNE

DUNE

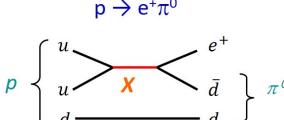
- Detector installation beginning in mid 20s
- Near and Far detectors located ~1300 km apart
 - Near detector: Complex of detectors for *v* properties
 - Far detector: <u>40 kton LArTPC</u> with $\sim 10^{35}$ of protons
- Proton decay search: $p \rightarrow \overline{\nu}K^+$

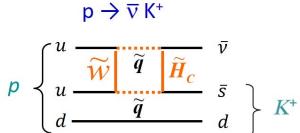
MicroBooNE

- 85 ton LArTPC running 2015 2021
- 0.25-2 GeV v beam from the Booster Neutrino Beam (BNB) and the Neutrino Main Injector (NuMI)
- ► Available data of ~10²⁴ POTs

K⁺ cross section measurement: Why Kaons?

Importance of Kaon study:


Many GUT models suggest major nucleon decay modes involving K⁺ at final states
(i o) n = x = K⁺


(i.e: $p \rightarrow \overline{\nu}K^+, n \rightarrow e^-K^+$)

- Provide better understanding of backgrounds from atmospheric neutrinos in nucleon decay searches at future DUNE
- No kaon production measurements on Ar or other targets at 1 GeV neutrino energy region

 \rightarrow This study: CC K^+ production analysis with NuMI at MicroBooNE

K⁺ Production by neutrinos

3 modes to produce K^+ by CC neutrino interactions


✓ Associated kaon production: Kaon accompanied by a hyperon in the final state (E_{thres} : 1.1 GeV)

✓ Single kaon production: Single kaon produced in the final state (E_{thres} : 0.8 GeV)

✓ Coherent kaon production:

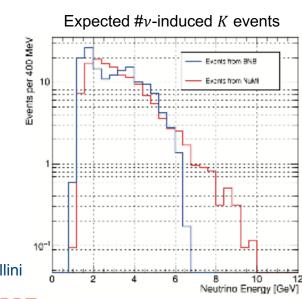
Single kaon produced with target nucleus remaining intact. (RARE)

• Kaon decay: $K^+ \to \mu^+ \nu_\mu$ (~63.6%) $K^+ \to \pi^+ \pi^- (~5.6\%)$ $K^+ \to \pi^+ \pi^0$ (~20.7%) $K^+ \to \pi^0 e^+ \nu_e$ (~5.0%) $K^+ \to \pi^+ \pi^0 \pi^0$ (~1.8%) $\nu_{\mu} + p \rightarrow \mu^{-} + K^{+} + p$ $\nu_{\mu} + n \rightarrow \mu^{-} + K^{+} + n$

K⁺ cross section measurement with MicroBooNE & MC

✓ Very rare ν_{μ} -induced CC*K*⁺ production process

- Two candidates of ν_{μ} -induced CCK⁺ production found in 6×10¹⁹ POT BNB data (DocDB 36161 by Jairo Rodoriguez Rondon)
- Selection performance of ~6.4% selection efficiency and ~75% purity with BNB MC

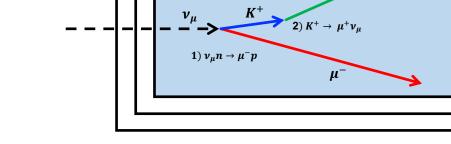

✓ Why NuMI beam?

• Comparable *K*⁺ production estimated with NuMI

	Evt with at least one K ⁺	Evt with at least one K ⁻	Evt with K ⁺ & K ⁻	Evt with K^{\pm} & K0
NuMI	135	13	13	1
BNB	147	14	14	1

DocDB: 6975 by Elena Gramellini

- \rightarrow Study ν_{μ} -induced CC K^{+} selection with NuMI MC for XSec measurement with BDT
- \rightarrow Combine NuMI + BNB measurement and double in statistics


 $^{{\}sim}3.2{\times}10^{20}$ POT from BNB ${\sim}4.0{\times}10^{20}$ POT from NuMI

Preselection before BDT

Preselection Criteria (same as K+ BNB study DB36315):

- 1. Neutrino events accepted by neutrino CC inclusive filter
- 2. One daughter track
- 3. Neutrino vertex in CC inclusive volume
- 4. End of daughter tracks within 5cm of TPC
- 5. End of tracks from neutrino interaction in CC inclusive volume

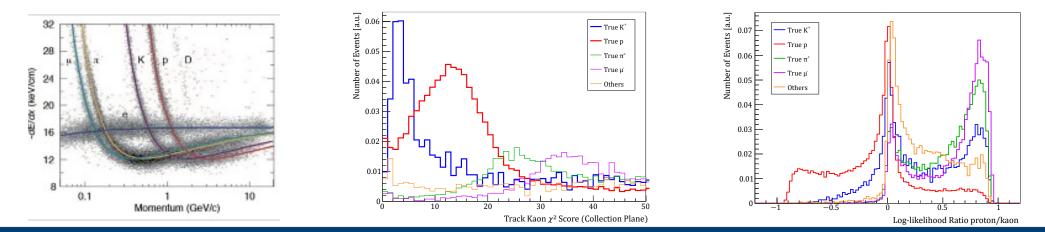
CC Inclusive Volume

5cm from TPC wall

LArTPC

True Signal definition:

- The event should have K^+ in final state produced via v_{μ} CC interaction
- FV cut same as preselection (ν vertex/End of K^+ track in CC inclusive volume, End of kaon daughter tracks within 5cm of TPC)
- True v_{μ} -induced CC K^+ events in 1.1×10²¹ POT of FHC run1 NuMI MC: 186
 - \rightarrow 19 events remain after preselection (efficiency: 19/186 = 10.2%, purity: 19/3106 = 0.61%)

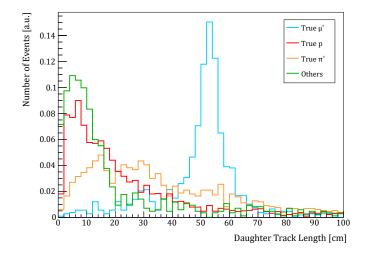


K⁺ Event Features and Training BDT (1/2)

- ✓ NuMI MC + Generated ~20k samples in total for single/associated CC K^+ signals
- ✓ Select variables well characterize true/BG events:
- χ^2 hypothesis score for *K*, *p*, μ , π for 3 planes: Calculated by the measured dE/dx and estimation from Bethe-Bloch formula.

$$\chi^2_{3pl} = \frac{\chi^2_{pl0} \times w_{pl0} + \chi^2_{pl1} \times w_{pl1+\chi^2_{pl2} \times w_{pl2}}}{w_{pl0} + w_{pl1} + w_{pl2}}, \quad w_{plane} = \begin{cases} 1 \text{ if } \sin^2(\theta_{wire}) \ge 0.05, \\ 0 \text{ if } \sin^2(\theta_{wire}) < 0.05. \end{cases}$$

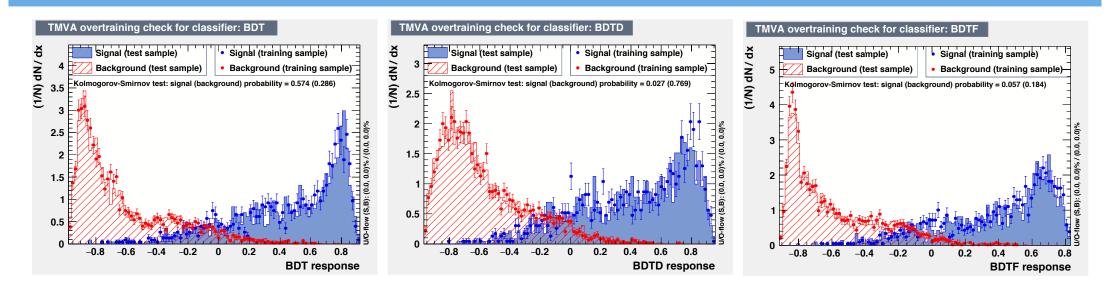
• **Log-likelihood ratio for** K/p and μ/p separation: PID score based on dE/dx PDF and wire pitch along the tracks.



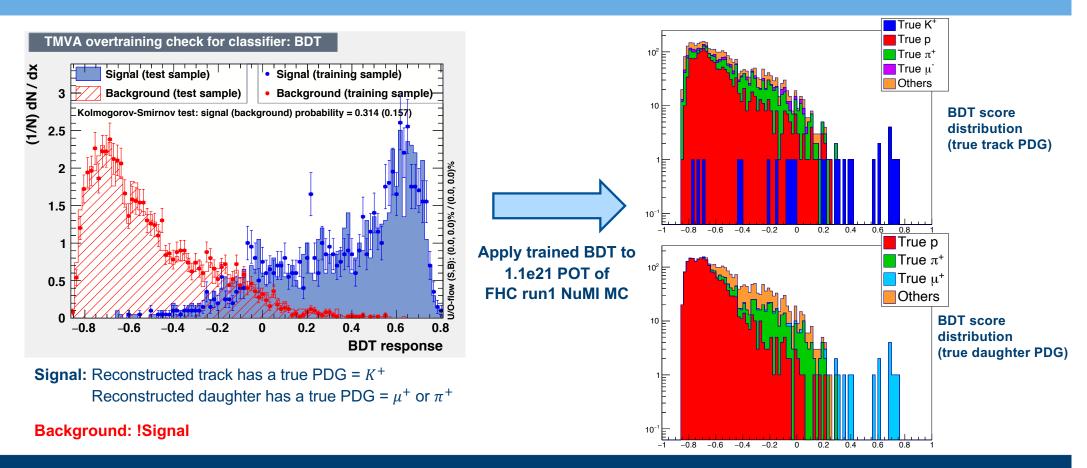
9

K⁺ Event Features and Training BDT (2/2)

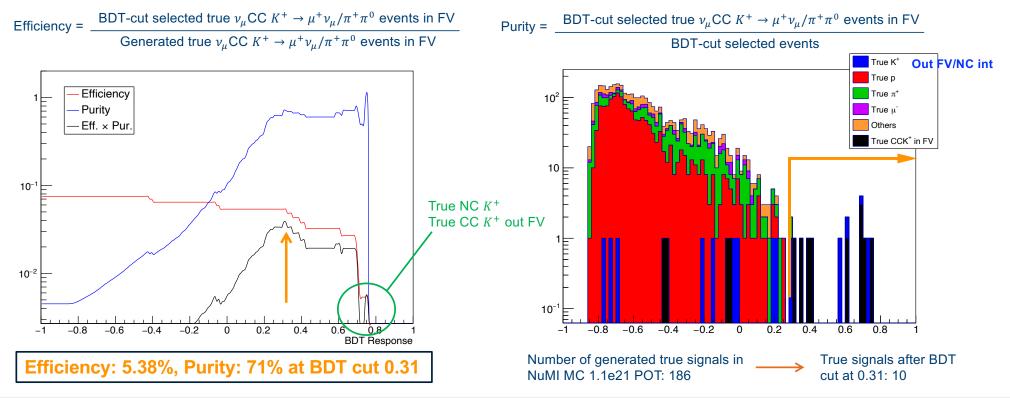
• **Length of daughter track**: Effective for μ^+ selection as K^+ daughter.



- Length of track
- Length of daughter distance
- Length of daughter vertex distance


BDT Training with Various Setups

Find the best BDT by optimizing: -Input parameter sets -Information gain index for splitting -BDT algorithms



BDT Selection with MC Simulation

Optimal BDT Cut

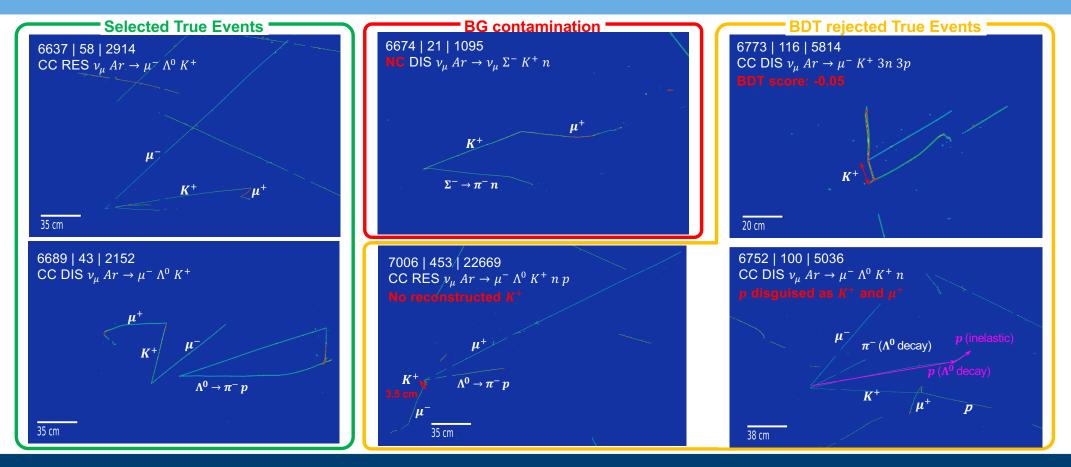
✓ Optimal BDT cut assessed by the efficiency*purity distribution.

Breakdown of BDT Selected Events

Run Subrun Event	True Interaction	<i>K</i> + candidate true PDG	<i>K</i> + daughter candidate true PDG	FV	K Process
6535 42 2101	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{0} K^{+}$	321	-13	\checkmark	Decay at rest
6549 20 1014	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$	321	-13	\checkmark	Decay at rest
6637 58 2914	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest
6605 85 4264	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n 2p$	321	-13	\checkmark	Inelastic
6689 43 2152	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest
6572 218 10949	CC DIS $\nu_{\mu} Ar \rightarrow \mu^- \Sigma^+ K^+ \pi^+ n$	321	-13	\checkmark	Decay at rest
6599 30 1530	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Inelastic
6572 226 11334	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest
6589 64 3207	CC DIS $\nu_{\mu} Ar \rightarrow \mu^- \Sigma^+ K^+ 8p \ 3n \ \pi^+ \ \pi^- \ \pi^0$	321	-13	\checkmark	Decay at rest
7004 549 27485	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest
6605 10 526	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13		Decay at rest
6888 124 6632	NC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} \pi^{0}$	321	-13		Inelastic
6908 91 4597	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+}$	321	-13		Inelastic
6674 21 1095	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+} n$	321	-13		Decay in flight

Breakdown of BDT Rejected True $v_{\mu}CCK^{+}$ Events in FV

Run Subrun Event	True Interaction	<i>K</i> + candidate true PDG	<i>K</i> + daughter candidate true PDG	FV	K Process
6773 116 5814	CC DIS $v_{\mu} Ar \rightarrow \mu^{-} K^{+} 3n 3p$	321	-13	\checkmark	Inelastic
6789 118 5937	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Inelastic
7008 1073 53670	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} \pi^{0}$	321	-13	\checkmark	Inelastic
6752 100 5036	CC DIS $v_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n$	2212	2212	\checkmark	Inelastic
6776 206 10345	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n \pi^{0}$	-211	-211	\checkmark	Inelastic
6521 32 1610	CC DIS $v_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} 4n 5p \pi^{+}\pi^{-}$	-211	2212	\checkmark	Decay at rest
6766 91 4591	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$	2212	2212	\checkmark	Decay at rest
7006 70 3528	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$	2212	2212	\checkmark	Decay at rest
7006 453 22669	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$	-13	-11	\checkmark	Decay at rest


Rejected True ν_{μ} CC K^+ in FV with correct PID

Rejected True v_{μ} CC K^+ in FV mis-PID track/daughter track

Rejected True ν_{μ} CC K^+ in FV with NO Reconstructed K+ track

Typical Event Displays

Summary and Future Plans

- \checkmark K⁺ production cross section measurement would be the key for future proton decay study at DUNE
- ✓ Since it is a very rare process, we will aim to double the statistics by using BNB and NuMI (this study) beams
- ✓ Event selection for v_{μ} CC K^+ studied by BDT method with NuMI + signal samples
 - ~5.4% efficiency and ~71% purity
 - Possibility of improvement by applying additional cut on kinetic energy or track length
- ✓ Systematic error estimation ongoing as preparations for real data analysis
- ✓ Aim to publish a paper as combined K+ cross section measurement with BNB+NuMI

