Online Track Reconstruction and Calibration for the Mu3e Experiment

By

Jg $\mid \mathrm{U}$

Haris Murugan

Supervisor: Prof. Dr. Niklaus Berger

"Interim Review Meeting of Intense"

Johannes Gutenberg-Universität Mainz
December, 2022

Overview

- Introduction
- Online Event Selection
- Camera Alignment System
- Things to do

Self Intro

- My name is Haris Avudaiyappan Murugan and I'm from Madurai, India.
- BS-MS dual degree (August 2016 - June 2021)
- Indian Institute of Science Education and Research (IISER), Berhampur, India.
- Master's Thesis Title: "Searches for Pentaquark States with the STAR Experiment At RHIC"
- \quad Started as Marie Curie Early Stage Researcher (ESR) and PhD in physics at Universität Mainz in October 2021.

Mu3e Experiment

- We search to observe or exclude the decay of a positive muon to two positrons and an electron.
- Observation would be a violation of the lepton flavour conservation.
- In standard model, possible via neutrino mixing but suppressed to $\mathrm{Br}<10^{-54}$.
- SINDRUM achieved $\mathrm{Br}<10^{-12}$ (1988) PSI.
- Phase I-muon rate of 1×10^{8} and $\mathrm{Br}<2 \times 10^{-15}$.

Mu3e Detector

Schematic diagram of Mu3e detector.

Detector Subsystems

Tracking detector

MuPIX: sensor pixels and the detector electronics are integrated into the same chip

Timing detector

Signal and Background processes

Signal

Combinatorial Background

Internal photon conversion $\left(\mathrm{Br}=3.4 \times 10^{-5}\right)$

Two body muon decay

- X can be a Familon, pseudo-Goldstone boson of a broken lepton family symmetry.
- Two body decays can only be differentiated from normal muon decays by the fixed positron momentum.
- Generate momentum histograms from GPU farm to search for such decays.
- Need precise online track reconstruction and calibration for such an analysis.

Readout System

Filter Farm

- Objective - select signal candidate events by reconstruction of tracks and vertices. To reduce data rate by a factor of 100.
- Procured two Asus ESC4000A-E10 Servers: Powered by AMD EPYC ${ }^{\text {тм }} 7002$ processor with 64 cores, 128 threads.
- GPU-optimized design allows four double-slot or eight single-slot GPUs. NVIDIA GeForce RTX 3080 Ti.
- Eleven $\mathrm{PCle}{ }^{\circledR} 4.0$ slots enables higher bandwidth and improved data transfer rates.

Online Event Selection

- Selection Cuts: Geometric cuts.
- Track Reconstruction: Hit triplet-based reconstruction.
- Vertex Selection: Reconstruction of possible event vertices.
- Each frame is a snapshot of 64 ns .
- Threshold performance- 1.302×10^{6} frames per second.

CUDA

Performance - preliminary results

Track-based Alignment

- Misalignments affects the precision of track reconstruction.
- Weak modes of the detector misalignment causes track-based alignment software to fit deformed tracks.
- Track-based alignment needs constraints from global parameters. Which can be provided by the camera system.
- Precise position measurement of the detector segments using camera system would provide additional information regarding the detector geometry.

Camera Alignment System

- Goal - To drive the camera measurement precision to be comparable to the individual tracking detector pixels, $80 \mu \mathrm{~m}$.

Chip Detection

Distance Measurement

- Chip $-20 \times 20 \mathrm{~mm}$ and Camera focal length -2.92 mm .
- Using magnification formula, the distance between the chip and the camera is estimated.
- The distance estimation matches well with actual measurement.

$$
\frac{y^{\prime}}{y}=M=\frac{f}{f-a}
$$

Things to do:

- Develop firmware for the GPU selection in the filter farm.
- Integrate multiple Farm PCs for the commissioning of the Mu3e Filter Farm.
- Online Reconstruction of Tracks in the GPU filter farm using real data from Mupix chips.
- Pattern recognition to detect the position of the chips.
- Online histograming of track kinematics in the GPU.

PhD Requirements:

- Took the teaching assistantship of Advanced Practical course on Balmer series for the winter semester, 2022.

Workshops and Conferences

- "DPG Conference", (Heidelberg, March 21-25, 2022) held online and organized by Deutsche Physikalische Gesellschaft e.V.;
- "Mu3e Collaboration Meeting", (Villigen, April 28-29, 2022) workshop held at Paul Scherrer Institute;
- "EPT Summer Camp for Physics TAs", (Zuoz, August 12-14, 2022) engaging physics tutoring summer camp organised by ETH Zürich;
- "Paul Scherrer Institute Particle Physics Summer School - Vision and Precision", (Zuoz, August 14-20, 2022) lectures and talks organised by Paul Scherrer Institute.
- "PRISMA+ Cluster of Excellence" (Geisenheim, September 19-21, 2022) gave a talk about my dissertation.

Thank You

Backup

Selection Cuts

- Slope difference Δz between the slopes of consecutive layer hits in the longitudinal plane.

$$
\tan \lambda_{i j}=\frac{z_{j}-z_{i}}{h_{t, j}-h_{t, i}}
$$

$$
\Delta \lambda=\tan \lambda_{12}-\tan \lambda_{01}
$$

- In transverse plane we observe the angle Φ_{ij} between hits of two consecutive layers in relation the the origin:

$$
\cos \Phi_{i j}=\frac{\mathbf{h}_{t, i} \cdot \mathbf{h}_{t, j}}{h_{t, i} h_{t, j}}
$$

- $\mathrm{z}_{0}-\mathrm{z}_{1}<30 \mathrm{~mm}$
- The transverse radius of the circle going through all three hits

$$
r_{t, c}=\frac{d_{01} d_{12} d_{20}}{2\left[\left(\mathbf{h}_{0}-\mathbf{h}_{1}\right) \times\left(\mathbf{h}_{2}-\mathbf{h}_{1}\right)\right] z}
$$

Track Reconstruction

- For reconstruction Triplet fit is used.
- We search for the track minimizing the objective function. Assuming no momentum loss and thus a constant curvature k .

$$
\chi^{2}(\kappa)=\frac{\Phi_{\mathrm{MS}}(\kappa)^{2}}{\sigma_{\Phi}^{2}}+\frac{\Theta_{\mathrm{MS}}(\kappa)^{2}}{\sigma_{\Theta}^{2}}
$$

- More than three hits for a full track fit requires to accommodate for multiple triplets.

$$
\chi_{\text {global }}^{2}(\kappa)=\sum_{t}^{n_{\text {triplets }}} \chi_{t}^{2}(\kappa)
$$

- A global curvature is found for all triplet combinations minimising the MS angles for each triplet.

Vertex Fit

- All combinations of two positrons and one electron are considered within each time slice. We calculate the total energy of all particles in the triplet using their curvature K.
- The total energy of all particles, must match the muons rest energy.
- The weighted mean is calculated only if all three reconstructed tracks intersect and it is calculated for all combinations of three intersections from three tracks.
- The χ^{2} for a vertex estimate is computed from the differences between the point of closest approach and the weighted mean both in the transverse plane and in the z-coordinate.

