Secondments from Wigner RCP to TokyoU, and resulting scientific outcomes

Gábor Nyitrai

Wigner RCP, Budapest, Hungary International Virtual Muography Institute, Global Budapest University of Technology and Economics, Hungary

nyitrai.gabor@wigner.hu

Outline

- Muography detectors
- Secondment projects
- Sakurajima muography results
- Developments during and after secondments
- Summary, Secondment progress

Muography detectors

Characteristics of muography

Conditions of muographic survey:

- Positions (detector altitude below object, on surface or underground)
- Exposition time (10-30 days)
- Infrastructure (power, net, transportation)
- DEM/DTM surface map, tunnel maps
- Flux and uncertainty calculations, simulations

Requirements for detector design:

- Resolution (5-50 mrad)
- Size (available space vs. cost)
- Robustness (mechanical, environmental)
- Background suppression (eg. lead, on surface)
- Mobility, Autonomy, Consumption
- Cost-efficiency

Muography detectors

Advanced MWPC detectors from Wigner RCP

- Gaseous detector (Multi-Wire Proportional Chamber)
- >98% tracking efficiency, 9 mm FWHM position resolution
- Gas: nontoxic, non-flammable, commercial welding gas (Ar:CO₂ 82:18)
- Wide range of sizes (40x40 120x80 cm²)

Secondment projects^(A) NEWCUT

- Low E muon spectra
- For better imaging smaller objects
- 6 m, rotatable
- 19 MWPC + Pb walls
- Optimization: Neural network GEAN4 simulation

Secondment projects Muography Observation System at the Sakurajima volcano

- Collaboration and patent¹ with the University of Tokyo since 2016
- Continuous extension of the observatory
- 8.7 m² total, 11 detector module

¹H. Tanaka, K. Tarou, D. Varga, G. Hamar, L. Oláh: Muographic Observation Instrument, Japanese Ref. No.: 2016-087436, date 25/04/2016

Secondment projects: Installations

7

Sakurajima muography results Lahar monitoring

- Danger: rain triggered lahars (volcanic sediment movement)
- Mass changes by muography
- Better understanding volcanic post activities
- Assessment of hazard levels

Sakurajima muography results Plug formation

• Density change under crater regions -> explanation for eruption shift

Developments Software

Under the University of Tokyo secondments (supervision: prof. HKM.Tanaka and L.Oláh)

- Precise flux calculation and comparison of rock-thickness data from DEM
- Machine learning as software tool for improved muon tracking
- Quantitative evaluation of muographic data

Developments Hardware

For new underground application (Mining, Archaeology, Civil engineering)

2022 D.Varga, JINST 2022, 307

Developments

Low gas consumption

Gas system:

- Open outlet \rightarrow no stress due to atm. pressure change
- Daily temperature change could cause air backflow
 → properly designed buffer tube solves the issue
- Low intrinsic outgassing \rightarrow low input flow possible
- Generally used 1—2 l/h can be decreased to 0.12 l/h
- >Less maintenance (10 | bottle for a year)

≻More autonomy

Summary

- Multiple detector technologies in muography. Ours: advanced MWPC (gaseous)
- Important developments thanks to the experiences gathered during the secondments
 - NEWCUT spectrometer upgrade
 - Sakurajima Muography Observatory extension
 - > Detection software and hardware developments for better imaging and new applications
- Geoscientific results shown (eg. Lahar movements, Plug formation)

Secondment progress

Seconded	Date	Target	Status
G. Galgóczi	31 July 2019 – 31 Aug. 2019	Detector installation, Simulation development	Completed
G. Nyitrai	1 Aug. 2019 – 30 Aug. 2019	Detector installation, Software development	Completed
G. Galgóczi	1 March 2020 – 18 March 2020	Detector installation, Simulation development	Completed
G. Nyitrai	1 March 2020 – 1 Apr. 2020	Detector installation, Software development	Completed
G. Hamar	2023, 1 month	Joint developments	Planned
G. Hamar	2023, 1 month	Joint developments	Planned
G. Galgóczi	2023, 1 month	Detector installation, Simulation development	If possible
G. Nyitrai	2023, 1 month	Detector installation, Software development	If possible

Thank you for your attention!

INTENSE Acknowledged scientific releases:

List of publications since 2019

- 2021 L.Oláh "Muographic monitoring of hydrogeomorphic changes…" SciRep 11, 17729
- 2021 G.Nyitrai "Toward low gas consumption…" JAP 129, 244901
- 2021 G.Hamar "Gaseous Tracking Detectors at the Sakurajima…" TIPP'21
- 2022 D.Varga "Construction and readout system…" JAIS 2022, 307
- 2022 L.Oláh "Development of Machine Learning…" JAIS 2022, 264
- 5 best international presentations
- 2021 G.Hamar "Underground Muography with Portable Gaseous Detectors" <u>TIPP'21</u> online
- 2021 G.Nyitrai "Low gas consumption in tracking detectors for outdoor applications" TIPP'21 online
- 2021 D.Varga "Construction and readout systems of gaseous muography detectors" <u>Muographers</u> (Ghent, Belgium)
- 2022 G.Nyitrai "Overview of muography in geoscientific research" <u>EGU'22</u> (Vienna, Austria)
- 2022 G.Nyitrai , Volcano muography with MWPC cosmic ray detectors" <u>CoV'22</u> (Heraklion, Greece)

Backup slides

Muography principles

Imaging with cosmic muons

- High energy cosmic particle collisions in the upper atmosphere → Muons
- Muon flux can be measured in a direction by tracking → Detectors
- Flux is proportional to the integrated density-length (absorption)
 → X-ray-like images
- Imaging static density anomalies or dynamic density changes in high resolution

Tanaka et al, GRL 36, 1 (2009)

Sakurajima Results: AI Forcasting

Muography detectors

Detector technologies

Emulsion detectors

Tioukov et al, Sci Rep 9, 6695 (2019)

- Nuclear emulsion layer
- Submicroscopic track
 when muon passes
- Readout: development, scanning
- PRO: high resolution, no consumption
- CONTRA: no monitoring, complex readout

Scintillator detectors

Lo Presti et al, NIMA 904, 195 (2018)

- Scintillator rods
- Light flash when muon passes
- Readout: photo-electron conversion, HV multiplier
- PRO: easy construction or good resolution
- CONTRA: weight, high cost vs. resolution tradeoff

Gaseous detectors

Nyitrai et al, JAP 129, 244901 (2021)

- Gaseous chambers
- Electron ionization when muon passes
- Readout: HV, electron avalanche, amplification
- PRO: large area, low weight, good cost-resolution tradeoff
- CONTRA: complex construction, gas usage

Fields of applications

Muon absorption

- Volcanology
- Mining
- Archaeology
- Civil engineering
- Others: speleology, glaciology, groundwater, atmosphare monitoring, nuclear reactor, etc...

Muon scattering

• Nuclear waste/fuel cargo tomography

Further reading:

2022 L. Olah et al "Muography: Exploring Earth's Subsurface with Elementary Particles"

Geophysical Monograph 270, ISBN 9781119723028

Sakurajima volcano. Tanaka and Olah, Phil. Trans. R. Soc. A. **377** 20180143 (2019)

Gábor Nyitrai Castle of Mussomeli, archaeology, preliminary. Collab with University of Catania, University of Tokyo, and City of Mussomeli.

Background suppression

A review of background sources in: L. Bonechi *Rev. Phys* **5**, 100038 (2020)

Practices to assort low energy particles

- Scattering lead wall for 0.1—1 GeV cut-off
 [L. Oláh Sci. Rep. 8, 3207 (2018)]
 Background as low as 10⁻³ 1/m²/s/sr with 5—10 cm lead
- Cherenkov detector and/or ToF measurement against backscattering
 [J. Peña-Rodríguez, PoS ICRC2021, 395 (2021)]

R. Nishiyama, GJI 206, 2 (2016)

Surface muography projects: Budapest Fairy Rock

- Motivation:
 - Demonstration of looking through a mountain
 - Measuring the effect of multiple scattering
 - Measuring the imaging resolution of muography
- Idea:

finding a geographical place where there is a high gradinet of densitylength behind a hill

• Setup:

Fairy Rock (50—100 m rock length) in front of the detector Contour of John's hill behind the Fairy Rock is a high gradient region

Resolution of muography

Budapest Fairy Rock

Drone photo 50 m above the detector

Underground

Detector requirements in practice...

- Size (available space)
- Robustness (movement, vibrations, water, dust, temperature, humidity, pressure)
- Mobility (weight)
- Autonomy
 - low power consumption for battery
 - low gas consumption for gaseous detectors
 - remote data collection
- Resolution (10-50 mrad)

An old mine in Hungary. Mts40 Run105 (Buda Castle) Missing Rock Meter

A natural cave near Budapest.

An active mine in Finland.

3D tomography

- Királylak (Budapest), speleology
- Measurements in a line
- 2+1D inversion on tilted slices
- Erosion zones found

Inversion result with a weighted least square method.

Validation by drilling.

Multiple muograph image along a straight tunnel. ²⁶

Mussomeli

Surface muography projects: Etna volcano

- New collaboration will be with the University of Catania
- For observation and tomography of the Etna
- Combination of scintillator and gaseous detector
- Challenges: 3000 m altitude, several m snow in winter, regular large eruptions (area closed)

[[]Lo Presti, SciRep 10, 11351 (2020)]

Systematic errors

- Different flux calculation methods
- Altitude-correction [2002 Hebbeker & Timmermans] $\Phi(h) = \Phi(h = 0) \cdot \exp(-h/h_0)$
- Geomagnetic effect [2000 Cecchini]
- Solar wind [1978 Bhattacharyya]
- Temperature/Pressure [1997 Ambrosio, 2009 Tilav]
- Rock composition [2018 Lechmann]

- Energy minimum calculation
- Multiple scattering [2018 Oláh]
- Detection errors (resolution, efficiency, acceptance, etc.)
- Density-length errors (detector position/angle, surface map accuracy, etc.)
- The angle dependence of the errors

+ Statistical errors.. (number of muons)