The Mu2e electromagnetic calorimeter and Mu2e-II upgrade

Luca Morescalchi

November 28th, 2022, Pisa

H2020 MSCA RISE 2018 GA 822185

INTENSE MidTerm Review Meeting

Calorimeter Requirements

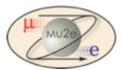
For the $\mu \rightarrow e$ conversion search, the calorimeter adds redundancy and complementary qualities with respect to the high precision tracking system

- Large acceptance for the mono-energetic electron candidate events
- Particle Identification capabilities with mu/e rejection of 200
- "Seeds" to improve track finding at high occupancy
- A tracking independent trigger

calorimeter

stopping target

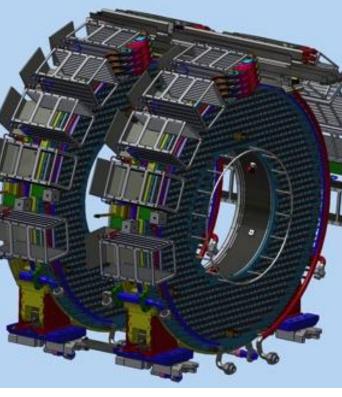
straw tracker


proton absorber

For 100 MeV electrons @ 50 degrees impact angle

- → Provide energy resolution σ_E/E of O(< 10 %)
- → Provide timing resolution $\sigma(t) < 500$ ps
- \rightarrow Provide position resolution < 1 cm
- → Work in vacuum @ 10⁻⁴ Torr and 1 T B-Field
- → Survive the harsh radiation environment

INFN

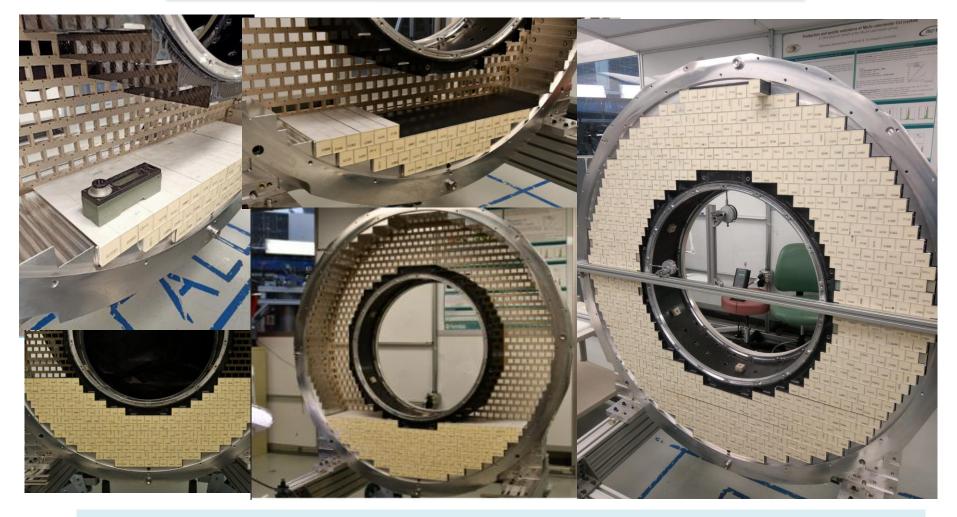


- ✓ Two annular disks, each one with 674 un-doped CsI parallelepiped crystals with square faces:
 - → Crystal dimensions (34 x 34 x 200 mm³) ~ 10 X₀
 → Inner/Outer Radius = 374/660 mm
- ✓ Each crystal is read out by two large area UV extended Mu2e SiPM's (14x20 mm²) through a 2mm air gap
- ✓ SiPM glued on copper holders with FEE mounted on SiPM pins
- ✓ Digital electronics at 200 Msps located in near-by electronics crates
- ✓ Radioactive source (ala Babar) and laser system provide absolute calibration and monitoring capability

Operate with very high reliability in vacuum and radiation hard environment \rightarrow -10 °C for SiPMs

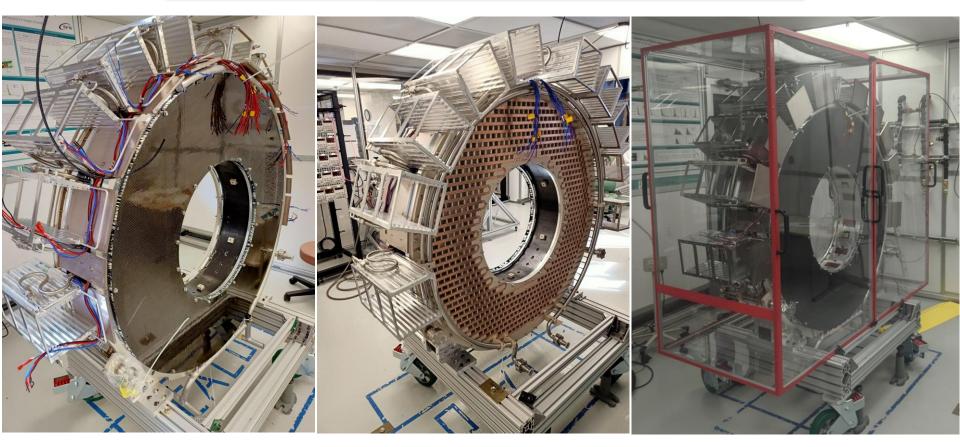
NFN

Assembling Disk-0 in SiDet

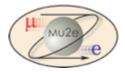


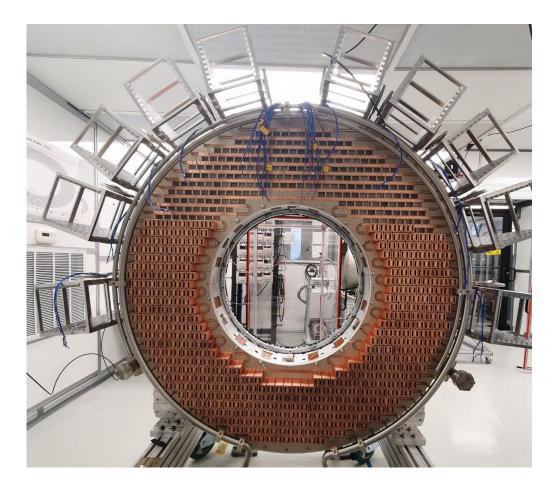
- \rightarrow Clean Room ISO-7, services
- ightarrow Outgassing vessel mounted + ORC for the Outgassing vessel
- \rightarrow final adjustments in progress: N2 lines, bottles, ORC + calorimeter tent
- \rightarrow Very dry athmosphere (RH ~ 30-35%)
- → Alignment of mechanical structure with Al Disk + Inner Ring + Peek Front plate Our goal for assemby and operation in vacuum:
- ➔ Keep all components cleaned and outgassed to reach a total OR < 8 E-3 Torr*I/s</p>

Crystals Stacking

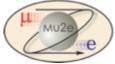


Successful outgassing of all 674 crystals selected for optimized positioning on the disk + great stacking of all crystals on mechanical support

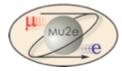




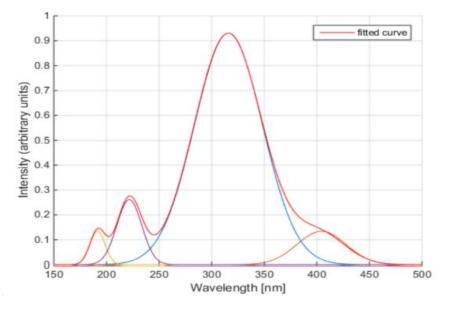
- After installation of the ten crates , their connection to the cooling circuits have been carefully tested. Leaks below 10⁻¹¹ mbar*l/sec
- Calorimeter protected by dust with a BOX where dry air is kept circulating

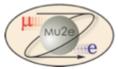


- The mechanical parts, crystals and readout units (photosensors + FEE) installation has been completed
- Mass production and installation of electronics will start in 2023 (see details in E. Pedreschi's talk)
- Integration of the whole system with the rest of the experiment
- Calibration and test of the detector with cosmic rays and radioactive source

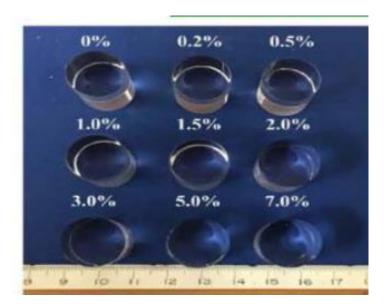

In the next two years a huge effort will be necessary in order to successfully commission the calorimeter!

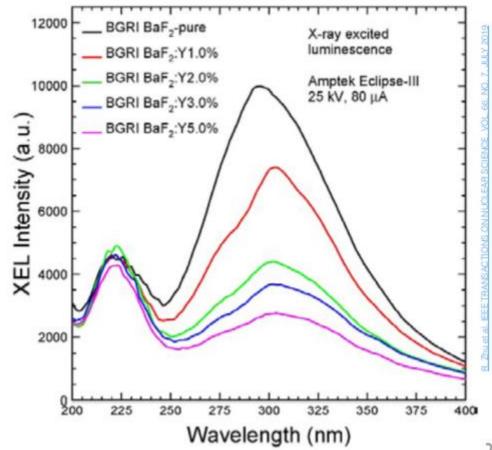
INFN Mu2e-II Calorimeter Requirements


- We exploited the experience gained building the Mu2e calorimeter to start to design the one needed in the Mu2e-II upgrade
- Required performances are the same of Mu2e calorimeter:
 - an energy resolution of σ_E/E of O(< 10 %)
 - a timing resolution of $\sigma(t) < 500 \text{ ps}$
- What will change is the **occupancy** of the detector and **the radiation damage**:
 - 1. Intensity increases by a factor of 3 (Pileup increase)
 - 2. Duty cycle increases by a factor of 4 (from 25% to 100%)
 - 3. Overall Dose and Neutron flux increases X 10 (1 Mrad, 10^13 n/cm^2)
- A SiPMs + Csl crystals solution is no more viable.. we need:
 - Fast, high light yield and radiation hard crystal.. (BaF2..)
 - ➢ Fast, high PDE and radiation hard photosensor.. (Solar blind SiPMs..)

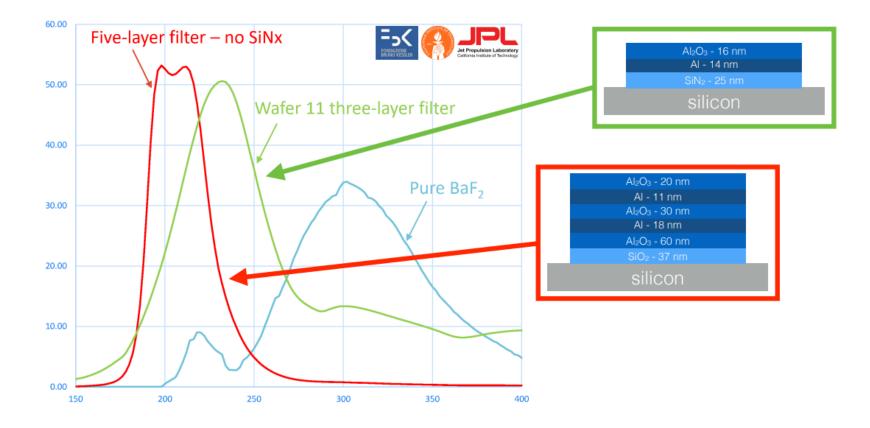

 BaF₂ crystal has a ultrafast scintillation at 220 nm with 0.5 ns decay time and a similar intensity as CsI, and may survive 100 Mrad. Its slow scintillation at 300 nm with 650 ns decay time, however, causes pileup in a high rate environment.

	LSO/LYSO	Csl	BaF ₂
Density (g/cm ³)	7.4	4.51	4.89
Melting point (°C)	2050	621	1280
Radiation Length (cm)	1.14	1.86	2.03
Molière Radius (cm)	2.07	3.57	3.1
Interaction Length (cm)	20.9	39.3	30.7
Z value	64.8	54	51.6
dE/dX (MeV/cm)	9.55	5.56	6.52
Emission Peak ^a (nm)	420	310	300 220
Refractive Index ^b	1.82	1.95	1.5
Relative Light Yield ^{a,c}	100	3.6	42
		1.1	4.1
Decay Time ^a (ns)	40	30	650 0.5
d(LY)/dT ^d (%/°C)	-0.2	-1.4	-1.9 0.1



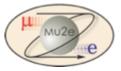

 Slow suppression may be achieved by rare earth (Y, La and Ce) doping, and/or solar-blind photo-detectors, e.g. Cs-Te, K-Cs-Te and Rb-Te cathode

To suppress the detection of the BaF2 slow component, an intense R&D campaign is ongoing..



2

Y doping can suppress slow scintillation component of BaF2



- Caltech-JPL-FBK consortium is working on delivering developing a special coating for SiPMs to suppress the detection of the BaF2 slow component:
 - Sandwich of Al, SiN2 and Al2O3 layers deposited on the active material

- □ The Mu2e CsI+SiPM Calorimeter demonstrated excellent energy (< 10 %) and timing (< 500 ps) resolution @ 100 MeV as proven with electron beams
- □ Production of crystals, SiPMs and FEE completed
- Production of mechanical parts completed for disk-0
- □ Assembly room at FNAL is being completing
- □ Mass production and installation of electronics will start in 2023
- □ A Vertical Slice Test is planned at FNAL in 2023 to verify the integration of the electronic chain with the DAQ of the experiment
- □ Commissioning of the calorimeter in 2024
- □ The R&D on the Mu2e-II calorimeter is converging into a viable conceptual design based on BaF2 crystals readout by Solar Blind Silicon PhotoMultipliers