INTENSE WP4 Charged Lepton Flavour Violation Experiments

Mark Lancaster

CLFV is a worldwide endeavour

INTENSE is supporting research at PSI and Fermilab: particularly the secondments to Fermilab for Mu2e

Two Types of Measurement Using Muon Beams

Looking for deviation from precise SM prediction e.g. (g-2), Lepton Universality

Looking for a signal that is essentially zero in the SM e.g. muon electric dipole moment (EDM) or charged lepton flavour violation (CLFV)

Why Muons?

Can be produced in large numbers and live long enough

Mu2e has sensitivity to BR ($h
ightarrow \mu e$) of 10⁻¹⁰

Access to high mass scales

Charged Lepton Flavour Violation (cLFV)

In SM: neutrino oscillations (masses) are intimately connected with charged lepton flavour violation

and also in BSM:
$$u_{RH}
ightarrow l^- H^+$$

And thus to extensions to the Higgs sector.

Charged Lepton Flavour Violation (cLFV)

Ratio of the 3 different CLFV processes is model dependent and depend on model parameters.

O(10⁴) improvement driven by new technology

Being probed by MEG ($\mu^+ \to e^+ \gamma$), Mu3e ($\mu^+ \to e^+ e^- e^+$), DeeMe/COMET/Mu2e ($\mu^- N \to e^- N'$)

MEG-II at PSI

MEG-I (2016) : BR ($\mu \rightarrow e\gamma$) < 4.2 x10⁻¹³ (90%CL)

MEG-II to reach 6x10⁻¹⁴

$$N_{\rm BG} = \left(\frac{R_{\mu}}{D}\right)^2 \Delta t_{e\gamma} \Delta E_e \left(\Delta E_{\gamma}\right)^2 \left(\Delta \Theta_{e\gamma}\right)^2$$

WP4: CLFV Mark Lancaster INTENSE Review : 28/11/22 : 8

MEG-II at PSI

Improved detector resolution and granularity Higher beam intensity achievable: $7 \times 10^7 \, \mu/s$ New positron tracker New detector for RMD New TDAQ system Improved photon detector

	MEG-I	MEG-II
$\sigma(E_e)$	380 keV	100 keV
$\sigma(t_{e\gamma})$	120 ps	70 ps
$\sigma(\phi_e)$	11 mrad	4 mrad
$\sigma(E_{\gamma})$	1.6%	1 %
$\sigma(heta_e)$	9 mrad	7 mrad

MEG-II: X(17)

Inv. Mass Residuals

J. Phys. Conf. Ser. 2018, 1056, 012028 (8Be*)

J. Phys. Conf. Ser. 2020, 1643, 012001 (4He*)

Possible interpretation : 17 MeV boson (BR \sim 6 x 10⁻⁶)

Li₂O layer on Cu substrate in PSI proton beam MEG-II has improved resolution compared to Atomki

Data to be taken in 2022 prior to CLFV running.

MEG-II GEANT4: mass resolution: 0.5 MeV

MEG-II

2020 / 2021 – commissioning Sep – Dec 21 : data fopr X(17)

Jun-7 22 : began 1st CLFV physics run

Expect to surpass MEG-I sensitivity with this years data

Mu3e at PSI

10³ improvement in limit - Phase-I & further factor of ~ 10 with HIMB 10¹⁰ mu/sec upgrade

Mu3e at PSI

First integration Run 2021

Full beam line commissioning 2022 - required muon rate (2.5x108/s) achieved

Tracker production will conclude in 2023 ready for integration run

2024 – engineering run 2025 - 1st physics CLFV run

Test beam 2021

Beam commissioning 2022

2.49e108 mu/s @2.4 mA

Mu3e at PSI

Significant progress on simulation and developing the online analysis tools (GPUs)

Mu2e

Beam commissioning 2023 Detector commissioning 2024 Physics running 2025

Mu2e: FNAL activities

Calorimeter (INFN) construction is taking place in SiDet cleanroom

1st disk construction well advanced 2nd disk will start 2023

STM (UK) integration starting in Mu2e-hall with aim to do end-end DAQ/Art test in summer 2023.

Conclusions

Great time for muon CLFV physics.

Leadership in 3 of the 4 key experiments: MEG-II, Mu3e and Mu2e

MEG-II has begun physics running and Mu3e/Mu2e will begin in next 2-3 years

Support from EU-INTENSE has been vital in allowing us to integrate and commission our detectors : thank-you.

WP4: CLFV Mark Lancaster INTENSE Review: 28/11/22: 18