Modeling the detector response of the CYGNO optical readout TPC.

(Tentative title, to be discussed)

F.D. Amaro^a, R. Antonietti^{b,c}, E. Baracchini^{d,e}, L. Benussi^f, S. Bianco^f, C. Capoccia^f,
M. Caponero^{f,g}, D.S. Cardoso^h, G. Cavoto^{i,j}, A. Cortez^{d,e}, I.A. Costa^{b,c}, G. D'Imperio^j,
E. Dané^f, G. Dho^{d,e}, F. Di Giambattista^{d,e}, E. Di Marco^j, F. Iacoangeli^j, H.P. Lima Júnior^k, G.S.P. Lopes^l, G. Maccarrone^f, R.D.P. Mano^a, R.R. Marcelo Gregorio^m,
D.J.G. Marques^{d,e}, G. Mazzitelli^f, A.G. McLean^m, A. Messina^{i,j}, C.M.B. Monteiro^a,
R.A. Nobrega^l, I.F. Pains^l, E. Paoletti^f, L. Passamonti^f, S. Pelosi^j, F. Petrucci^{b,c},
S. Piacentini^{i,j}, D. Piccolo^f, D. Pierluigi^f, D. Pinci^j, A. Prajapati^{d,e}, F. Renga^j,
R.J.d.C. Roque^a, F. Rosatelli^f, A. Russo^f, G. Saviano^{f,n}, N.J.C. Spooner^m, R. Tesauro^f,
S. Tomassini^f, S. Torelli^{d,e}, and J.M.F. dos Santos^a
^aLIBPhys, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
^bDipartimento di Matematica e Fisica, Università Roma TRE, 00146, Roma, Italy
^cIstituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, 00146, Rome, Italy

^eIstituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, 67100, Assergi, Italy

^fIstituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044, Frascati, Italy

^gENEA Centro Ricerche Frascati, 00044, Frascati, Italy

^hCentro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil

ⁱDipartimento di Fisica, Università La Sapienza di Roma, 00185, Roma, Italy

^jIstituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185, Rome, Italy

^kCentro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil

¹Universidade Federal de Juiz de Fora, Faculdade de Engenharia, 36036-900, Juiz de Fora, MG, Brasil

^mDepartment of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK ⁿDipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Università di Roma, 00185, Roma, Italy

October 3, 2022

Abstract

Abstract [1] [2] [3] [4] [5] [6]

1

2

³ Contents

4	1	Introduction	2
5		1.1 Detector concept and design	2
6		1.2 Expected signal and backgrounds	2
7		1.3	2
8	2	Electron recoils track simulation	2
9	3	Modeling the detector response	3
10		3.1 Production, drift and diffusion of the ionization electrons	3
11		3.2 Avalanche multiplication	4
12		3.2.1 Saturation of the amplification	4
13		3.3 Image formation	5
14		3.4 Camera background noise	5
15		3.5 Other effects?	5
16		3.5.1 Optical sensor resolution?	5
17		3.5.2 Vignetting?	5
18		3.5.3?	5
19	4	Data analysis and reconstruction	6
20		4.1 Track reconstruction	6
21		4.2 Reconstruction algorithms optimization	6
22		4.2.1 ⁵⁵ Fe source	6
23		4.2.2 Multi-source data	6
24	5	Simulation optimization and results	6
25		5.1 Diffusion parameters	6
26		5.2 Attenuation length	6
27		5.3 Saturation parameters	6
28		5.4 Response linearity	6
29	6	Conclusions	6

30 1 Introduction

- 31 1.1 Detector concept and design
- 32 1.2 Expected signal and backgrounds
- 33 **1.3 ...**

³⁴ 2 Electron recoils track simulation

In this section a brief description of any relevant information on how the tracks were simulated using *Geant* should be discussed... Giulia?