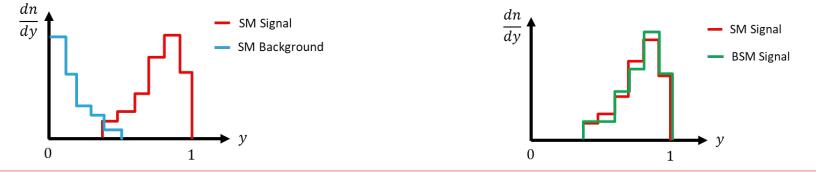
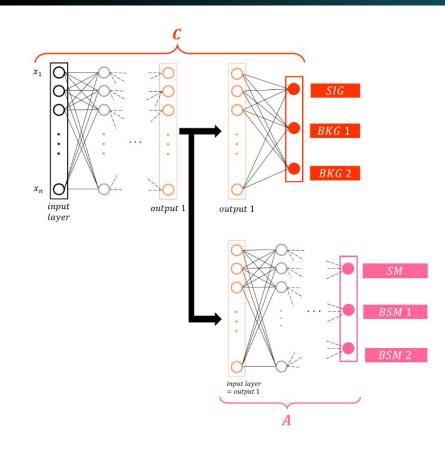
Domain Adaptation ML-INFN Hackathon


Benedetta Camaiani, Piergiulio Lenzi, Lorenzo Viliani

The basic idea

- Model agnostic measurements of Standard Model cross sections at the LHC.
- Simplified version of a study we recently published (<u>arXiv:2207.09293</u>).
- We want to reduce the model dependence in the signal extraction procedure of typical cross section measurements at the LHC, but keeping the best possible signal sensitivity.
- *y* : output of a DNN classifier (optimal S/B separation)
- Used as fit variable to measure the signal



y does not introduce a bias in the fit result since the shape of its distribution is roughly the same regardless of the theoretical model describing the data

Lorenzo Viliani (INFN)

Domain adaptation with an adversarial approach

Classifier

- Takes as input the measurable kinematic variables of an event
- Aims to determine if the event is signal- or background-like
- Each output represents the probability that an event belongs to the corresponding class
- Is trained on data sample including events coming from different "domains", i.e. different signal models1

Adversary

- Trained only on signal (SM or BSM) events
- Guess the physics model of signal events, regressing the domain from the second-to-last layer of C
 - 1. $\mathcal{L}oss = \mathcal{L}oss(\mathcal{C}) \alpha \cdot \mathcal{L}oss(\mathcal{A})$
 - 2. *Loss*(**A**)

Two-step training procedure

October 3, 2022

Dataset and Jupyter Notebook

- The case study is a cross section measurement of the Higgs boson produced via Vector Boson Fusion and decaying to WW→2I2v.
- Labelled simulated CMS data.
 - Generator-only information, no detector simulation!
- Contains the following classes of events in equal proportions.
 - Background events (SM processes such as ttbar, WW, etc.); BKG label
 - Higgs boson produced via Gluon Fusion; → GGH label
 - Signal (SM and BSM). **One label for SM signal + one for each of the 6 alternative BSM model**
- Includes a set of high-level input features (~26) mainly related to kinematics of leptons and jets.

• The Jupyter Notebook is currently running on a ML_INFN machine instantiated through INFN Cloud using hardware resources at CNAF.