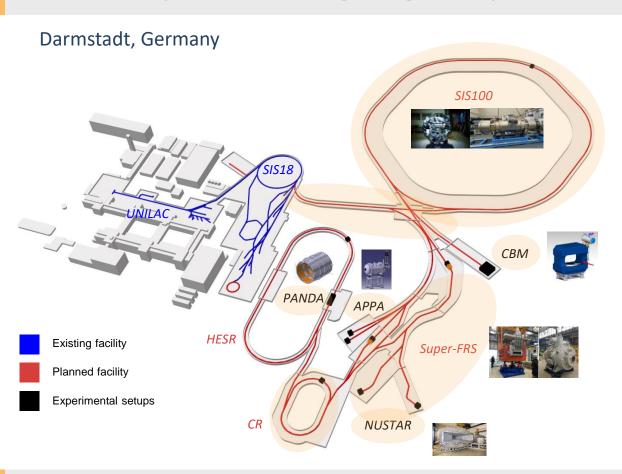



### **Test Facility for Superconducting Devices @GSI**

Superconducting Magnet Workshop, LASA, Milan, 17<sup>th</sup> of November, 2022 Christian Roux → Anna Szwangruber


### FAIR – superconducting magnet's point of view





### FAIR – superconducting magnet's point of view



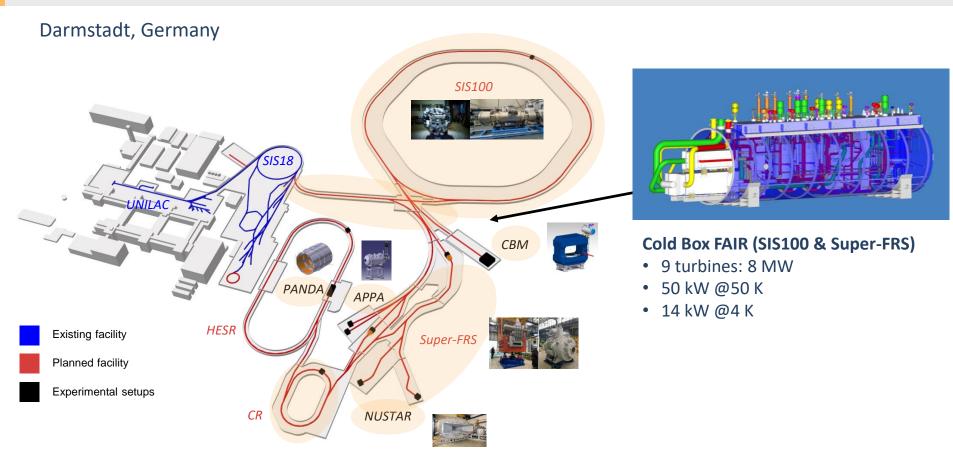


#### **SIS100 – 427 sc magnets**

- 108 dipoles
- 83 quadrupole doublets

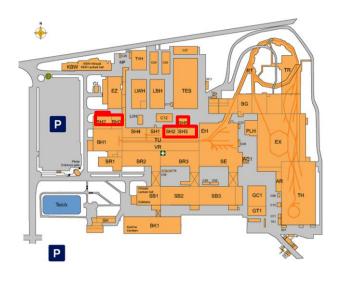
#### **Super-FRS – 194 sc magnets**

- 24 dipoles
- 33 multiplets with up to 9 magnets


## **experimental setups**CBM, APPA, PANDA, NUSTAR

#### under consideration

- collector ring (CR)
- beam lines (SIS18 –SIS100)


### FAIR – superconducting magnet's point of view





### **GSI** test facilities









#### **Prototype Test Facility (PTF)**

- one magnet test bench
- one universal cryostat
- annex building: compressors and transformer

#### **Serial Test Facility (STF)**

- four magnet test benches
- annex building: compressors, transformer, power supply
- 1.000 m³ Helium storage @300 K

### **Prototype Test Facility - PTF**



| Specs                   |                           |
|-------------------------|---------------------------|
| Cooling power @4.5 K    | 300 W                     |
| He liquefication rate   | 2 g/s                     |
| Max. power consumption  | <i>250</i> kW             |
| Helium inventory (warm) | <i>300</i> m <sup>3</sup> |
| Power converter         | 20 kA                     |
| Quench detection        | KIT                       |
| Area                    | <i>150</i> m <sup>2</sup> |





Testing of sc prototypes, long term powering tests on series components

### **Serial Test Facility - STF**



| Specs                   |                            |
|-------------------------|----------------------------|
| Cooling power @4.5 K    | 700 W                      |
| Cooling power @50 K     | 2000 W                     |
| He liquefication rate   | 6 g/s                      |
| Max. power consumption  | 434 kW                     |
| Helium inventory (warm) | <i>1000</i> m <sup>3</sup> |
| Power converters        | 20 kA (66V)                |
| Quench detection system | KIT                        |
| Area                    | <i>687</i> m <sup>2</sup>  |

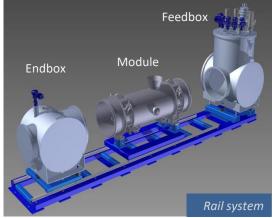


### **Serial Test Facility - STF**



| Specs                   |                            |
|-------------------------|----------------------------|
| Cooling power @4.5 K    | 700 W                      |
| Cooling power @50 K     | 2000 W                     |
| He liquefication rate   | 6 g/s                      |
| Max. power consumption  | 434 kW                     |
| Helium inventory (warm) | <i>1000</i> m <sup>3</sup> |
| Area                    | <i>687</i> m <sup>2</sup>  |



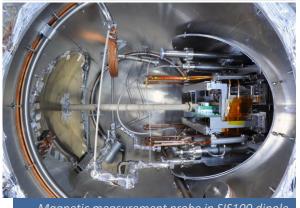

- Testing of series cryo magnetic modules, local-cryo components and main current leads for SIS100
- Super-FRS local- cryo





### **Mechanics and Interfaces**

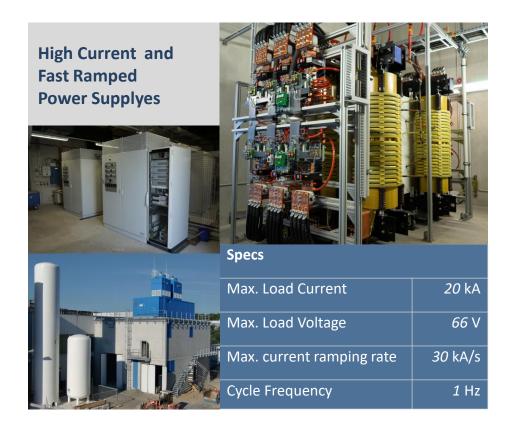


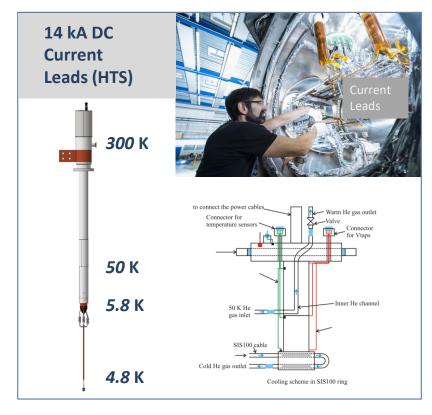



#### Test bench:

- rail system
- easy mounting of the module to the feed and end box
- good access to hydraulical and electrical connections
- module positioning: ±0.1 mm horizontal, ±1 mrad





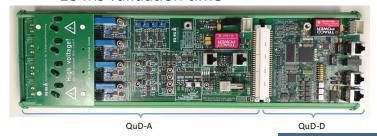



### **Electrical setup – Power supply & Current Leads**








### **Electrical setup – Quench Detection**





#### In house development

- Analog input (bridges), digital processing (FPGA)
- Few analog variants: magnets, busbars, current leads etc.
- Specs:
  - 100 mV quench signal on 100 V inductive base
  - 10 ms validation time



Quench Detection Unit

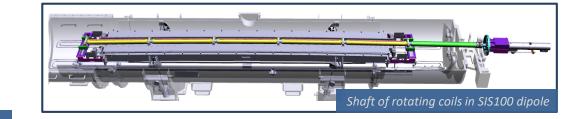
### **Main Measurement Systems**



#### High precision gap height measurements

- capacitive sensors
- absolute precision 15μm
- relative precision < ± 3μm</li>

#### Magnetic field measurements


- shaft of rotating coils
- field measurements in vacuum @4K
- calibration bench

#### **Electrical measurements**

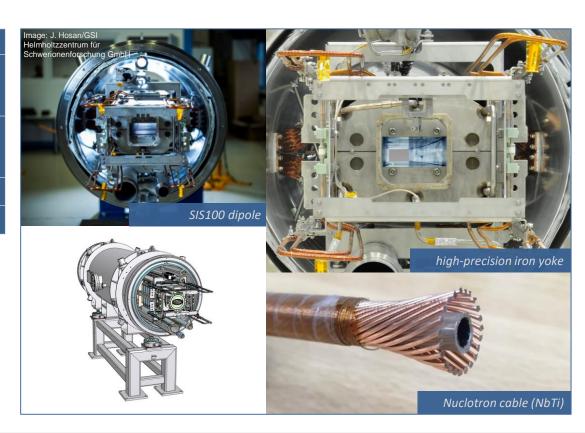
- turn to turn insulation
- HV-, LV- test







### Series testing @STF: SIS100 dipoles




| SIS100 dipole |                                                                                                          |
|---------------|----------------------------------------------------------------------------------------------------------|
| design        | <ul><li>superferric, Nuclotron cable</li><li>forced-flow two phase cooling</li><li>fast ramped</li></ul> |
| dimensions    | <ul> <li>aperture: h = 68 mm</li> <li>effective length L = 3.062 m</li> <li>3 t</li> </ul>               |
| field         | 1.9 T with 4 T/s                                                                                         |
| current       | 13.2 kA                                                                                                  |

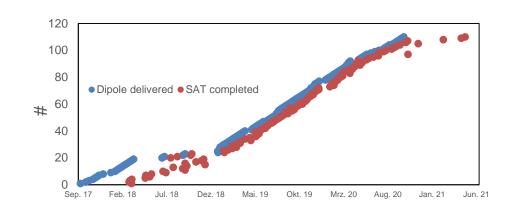
#### spent effort

- up to 50 SATs/year
- ~ 100 steps/SAT
- ~ 30 parameters/SAT including field measurement @4 K

110 modules tested in time



### Series testing @STF: SIS100 dipoles



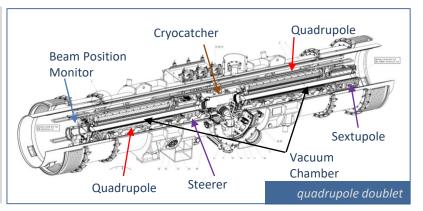

| SIS100 dipole |                                |
|---------------|--------------------------------|
| design        | • superferric, Nuclotron cable |
|               | forced-flow two phase cooling  |
|               | • fast ramped                  |
| dimensions    | • <i>aperture: h = 68</i> mm   |
|               | • effective length L = 3.062 m |
|               | • 3 t                          |
| field         | 1.9 T with 4 T/s               |
| current       | 13.2 kA                        |

#### spent effort

- up to 50 SATs/year
- ~ 100 steps/SAT
- ~ 30 parameters/SAT including field measurement @4 K

#### 110 modules tested in time

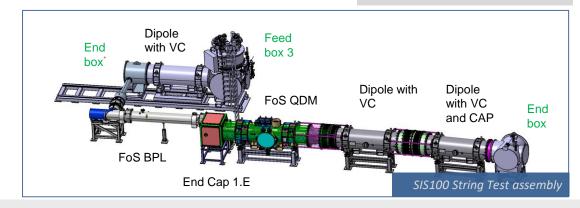





#### **Current activities**



#### **SIS100 Quadrupole Doublets**


- at least first of each type
   (11)
- standard tests
- systematic studies on:
  - position stability of the cold mass
  - electrical insulation



# sis100 String Test assembly representing a one cell of SIS100

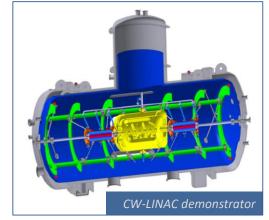
- collective studies on mechanic, cryogenic, electric, UHV etc.
- evaluation of the QD, local-cryo and power converter controls





### **Near Future and Long Term of STF**




#### **Upcoming:**

- Quadrupole Units for SIS100
- Feed and Current Lead boxes for SIS100
- Local-Cryo components for Super-FRS



#### Long Term:

- Testing on demand
- Supply of CW linac: utilization of SC solenoids in LINAC setup



