# $B^0 ightarrow \pi^0 \pi^0$ first look towards LS1 data update M. Dorigo, <u>S. Raiz</u>, D. Tonelli

Trieste

BtoHadrons meeting Sep 21, 2022

## Overview

BF and  $A_{CP}$  of  $B^0 \rightarrow \pi^0 \pi^0$  decays: important measurements unique to Belle II.

Status: 189.9 fb<sup>-1</sup> analysis by Francis shown at ICHEP2022 and targeting PRD submission soon.

Start from Francis analysis, and try to improve for full LS1 data update.

### Today focus on selection:

- revisit photonMVA
- revisit CSBDT
- Introduce specific BDT trained against continuum ho's



### Samples and selections

### Samples

GenericMC: MC15ri

SignalMC: MC15 locally produced (600000 events)

Data: Proc13 chunk1+chunk2

Off-res data: Proc13 (c1+c2) +Prompt

For data use "all" (no hadron skim).

## Base selections (from Francis analysis)

 $\gamma$ : E>0.03 GeV, |clusterTiming|<200, clusterNHits>1.5, 0.30<cluster $\theta$ <2.62 (very loose cuts)

π<sup>0</sup>: daughterAngle < 0.4,</li>
|daughterDiffOfPhi| < 0.4,</li>
|cosHelicityAngleMomentum| < 0.99,</li>
p > 1.5 GeV/c, 0.115 < InvM < 0.150 GeV/c<sup>2</sup> (very loose cuts)

 $B^0$ : -0.3< $\Delta E$ <0.2 GeV,  $M_{\rm bc}$ >5.26 GeV/c<sup>2</sup>

Will be optimised, large improvements unlikely

## Can we improve $\gamma$ and/or $\pi^0$ selections?

Apply all selections, CSMVA and photonMVA and check again distributions.

### NEW SINCE LAST TIME

## New possible $\gamma$ selections?

## $\gamma$ : E>0.03 GeV, |clusterTiming|<200, clusterNHits>1.5, 0.30<cluster $\theta$ <2.62



### Note: **clusterTiming** is not well

reproduced  $\rightarrow$  very loose cut



### NEW SINCE LAST TIME

## New possible $\pi^0$ selections?



# New possible $\pi^0$ selections?

### p > 1.5 GeV/c, 0.115 < InvM < 0.150 GeV/c<sup>2</sup>



## Photon MVA

## Photon MVA

Distinguish between signal photons and misreconstructed photons: beam backgrounds, energy releases from other particles...

Combine highly-discriminant cluster- and photon-variables in a MVA.

Mis-rec photons have low energies,  $B^0 \rightarrow \pi^0 \pi^0$  photons have high-energy.

 $\rightarrow$  Specialise MVA on high-energy photons: apply  $\pi^0$  selections before training.



### Photon MVA: inputs validation

Ideally would need a sample of true photons and a sample of mis-rec photons in data (difficult).

Use inclusive sample of photons from  $D^* \to D^0(K\pi\pi^0)\pi$  decays: reweigh momenta to mirror  $B^0 \to \pi^0\pi^0$  signal kinematics.

Sample is signal dominated  $\rightarrow$  ~all true photons (as in  $B^0 \rightarrow \pi^0 \pi^0$ ).

Compare many and new possible ECL input variables using MC15ri (200 fb<sup>-1</sup>) and Proc13c1(8 fb<sup>-1</sup>).

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0.25

0.2

0.15

0.1

0.05

0

0















0.03

0.025

0.02

0.015

0.01

0.005

0.3

0.25

0.2

0.15

0.1

0.05









## Photon MVA discrimination in release-06



PhotonMVA output

### Photon MVA validation

Apply photonMVA to  $B^+ \rightarrow K^+ \pi^0$  proc13 sample (chunk1+chunk2 — 62fb<sup>-1</sup>).



No photonMVA

### PhotonMVA>0.2

Background: 740 ± 40 Signal: 260 ± 30 Background: 680 ± 40 (-8,5%) Signal: 260 ± 30 (-0%)

Small statistics. Modest but positive impact. Will repeat using 190 fb<sup>-1</sup>.

### Photon MVA comparison

Simulation **Look at photons**: reconstruct  $B^0 \to \pi^0 \pi^0$  in genericMC and apply  $\gamma$  and  $\pi^0$ selections. Consider as "signal" all real photons, and as "background" all misreconstructed photons. Use MC info to obtain photon signal efficiency and bkg rejection after photonMVA selection. For fixed  $\varepsilon_{sig}$  (=96%), compare bkg rejection.

Old bkg rejection: 67.4% My bkg rejection: 85.2%

Simulation **Look at**  $B^0$  candidates: reconstruct  $B^0 \rightarrow \pi^0 \pi^0$  candidates in genericMC and apply  $\gamma$  and  $\pi^0$  selections. Consider as "signal" all signal  $B^0 o \pi^0 \pi^0$  events, and everything else as "background". Use MC info to obtain signal efficiency and bkg rejection after photonMVA selection. For fixed  $\varepsilon_{sig}$  (=94.5%), compare bkg rejection.

Old bkg rejection: 14.8%

My bkg rejection: 15.7%

Data **Check on data**: reconstruct  $D^{*+} \rightarrow D^0(K^-\pi^+\pi^0)\pi^+$  candidates in data and apply  $\gamma^$ and  $\pi^0$  selections. Reweigh using  $p(\pi^0)$ . Consider as "signal" all signal  $D^{*+} \rightarrow D^0 \pi^+$ events, and everything else as bkg. Obtain  $\varepsilon_{\rm sig}$  and bkg rejection as  $N_{\text{pass}}/(N_{\text{pass}} + N_{\text{not pass}})$  from fit. For fixed  $\varepsilon_{\text{sig}}$  (=96.6%), compare bkg rejection. My bkg rejection: 9.4±0.1% Old bkg rejection: 5.1±0.1%

## Photon MVA comparison

### 190 fb<sup>-1</sup> analysis

- 10 ECL variables
- Inputs are validated using MC14 and Proc12.
- Validation on  $D^{*+} \rightarrow D^0(K^0_S \pi^0) \pi^+$  with no reweighing.
- AUC = 0.94

### This analysis

- 11 ECL variables including beamBackgroundSuppressionMVA.
- Apply  $\pi^0$  selections prior to training.
- All inputs are validated using MC15 and Proc13.
- Validation on  $D^* \to D^0(K\pi\pi^0)\pi$ reweighed using  $p(\pi^0)$ .
- AUC = 0.97

# Photon MVA discrimination in release-06



Remove beamBackgroundSuppression



clusterAbsZernikeMoment51, E, clusterE9E21

Classifier Output

PhotonMVA output

## CSBDT

## CSBDT

Develop continuum-suppression BDT. Main difference wrt Francis analysis: include  $B_{\rm Tag}$  variables, avoiding large correlations (<10% — was 5% in old analysis) and/or sculpting.

Check if  $B_{\text{Tag}}$  variables sculpts or introduces large correlations in flavour tagger.

Start from  $\Delta r$  and  $\Delta Z$  (distance of vertex from IP).

Note: 6.7% of the signal events don't have a  $B_{\text{Tag}}$  vertex  $\rightarrow$  remove these events (bkg: -9.4%).

### New possible inputs:



### **CSBDT:** inputs validation

Validate **signal** distributions: compare  $B \rightarrow D(K\pi\pi^0)\pi$  sideband-subtracted data and sideband-subtracted MC.

Do not use  $B \rightarrow D(K\pi\pi^0)\pi$  for bkg because of the different compositions

Validate **background** distributions: compare  $B^0 \rightarrow \pi^0 \pi^0$  sideband data and sideband MC15.



### Inputs validation — Signal

Use  $B \rightarrow D(K\pi\pi^0)\pi$  sideband-subtracted data and sideband-subtracted MC.







Better training CSBDT using data only.

## CSMVA using data to train bkg

Two options:



Pro: describes well the background in the signal-region in all the variables

Cons: very small amount of data



Cons: doesn't describe well bkg in the signal region in two distributions (angles between pions)

## Poorly described variables in sideband data

Only two distributions not describing well bkg in signal region:



## CSMVA using data to train bkg

Two options:





### CSMVA using data to train bkg



AUC curves show same performance.

# CSMVA using off-resonance data: k-fold cross validation

Split sample in k = 10 folds. Use each combination of 9 folds to train BDT and remaining fold to test it  $\rightarrow$  obtain 10 ROC curves. Remove possible statistical effects.



# Performance is the same. Still deciding final choice.

# Check on flavor tagger: are $\Delta r$ and $\Delta Z$ in CSBDT biasing the FT?

## Flavor tagging check

Compare flavour tagger parameters obtained in  $B^0 \to \pi^0 \pi^0$  after applying CSBDT selection and in control channel  $B^0 \to D^-(K^+\pi^-\pi^-)\pi^+$  (largest BF btw those used by Sato-san in FT calibration).

|                    |                 |                        |                              |                                                         |                                                      | $D \rightarrow \pi^{\circ}\pi^{\circ}$                                        |
|--------------------|-----------------|------------------------|------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|
| r- Interval        | $arepsilon_i$   | $\Delta \varepsilon_i$ | $w_i \pm \delta w_i$         | $\Delta w_i \pm \delta \Delta w_i$                      | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$ | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$            |
| 0.000 - 0.100      | 17.1            | 0.22                   | $47.54 \pm 0.26$             | $2.60\pm0.52$                                           | $0.0414 \pm 0.0087$                                  | $-0.0866 \pm 0.0212$                                                          |
| 0.100 - 0.250      | 16.6            | 0.06                   | $40.97\pm0.26$               | $1.01\pm0.52$                                           | $0.5417 \pm 0.0311$                                  | $-0.1196 \pm 0.0631$                                                          |
| 0.250 - 0.500      | 21.1            | 0.85                   | $30.02\pm0.21$               | $0.34\pm0.43$                                           | $3.3760 \pm 0.0737$                                  | $0.0203 \pm 0.1471$                                                           |
| 0.500 - 0.625      | 11.8            | -0.38                  | $20.87 \pm 0.25$             | $1.84\pm0.51$                                           | $3.9966 \pm 0.0732$                                  | $-0.6337 \pm 0.1479$                                                          |
| 0.625 - 0.750      | 11.5            | -0.07                  | $15.08\pm0.23$               | $0.60\pm0.45$                                           | $5.5858 \pm 0.0797$                                  | $-0.2268 \pm 0.1598$                                                          |
| 0.750 - 0.875      | 8.6             | 0.06                   | $8.31\pm0.20$                | $0.56\pm0.40$                                           | $5.9602 \pm 0.0712$                                  | $-0.1181 \pm 0.1425$                                                          |
| 0.875 - 1.000      | 13.4            | -0.74                  | $1.67\pm0.07$                | $0.24\pm0.15$                                           | $12.5174 \pm 0.0785$                                 | $-0.8171 \pm 0.1573$                                                          |
| Total              |                 |                        | $\varepsilon_{eff} = \Sigma$ | $\sum_i \varepsilon_i \cdot \langle 1 - 2w_i \rangle^2$ | $2^{2} = 32.02 \pm 0.17  \Delta \epsilon$            | $z_{eff} = -1.98 \pm 0.34$                                                    |
|                    |                 |                        |                              |                                                         |                                                      | $B^0 \rightarrow D^-(K^+\pi^-\pi)$                                            |
| <i>r</i> -Interval | $\varepsilon_i$ | $\Delta \varepsilon_i$ | $w_i \pm \delta w_i$         | $\Delta w_i \pm \delta \Delta w_i$                      | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$ | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \overline{\varepsilon_{eff,i}}$ |
| 0.000 - 0.100      | 17.7            | 0.27                   | $47.27 \pm 0.26$             | $2.58\pm0.51$                                           | $0.0526 \pm 0.0099$                                  | $-0.0986 \pm 0.0217$                                                          |
| 0.100 - 0.250      | 16.8            | 0.26                   | $41.09 \pm 0.26$             | $1.07\pm0.52$                                           | $0.5322 \pm 0.0311$                                  | $-0.1189 \pm 0.0623$                                                          |
| 0.250 - 0.500      | 21.1            | 0.60                   | $30.37\pm0.22$               | $0.24 \pm 0.43$                                         | $3.2461 \pm 0.0728$                                  | $0.0138 \pm 0.1457$                                                           |
| 0.500 - 0.625      | 11.5            | 0.06                   | $21.40 \pm 0.26$             | $1.66\pm0.52$                                           | $3.7607 \pm 0.0723$                                  | $-0.4175 \pm 0.1445$                                                          |
| 0.625 - 0.750      | 11.2            | -0.13                  | $15.23 \pm 0.23$             | $0.97\pm0.46$                                           | $5.4192 \pm 0.0794$                                  | $-0.3649 \pm 0.1588$                                                          |
| 0.750 - 0.875      | 8.6             | -0.22                  | $8.46 \pm 0.20$              | $0.46\pm0.41$                                           | $5.9675 \pm 0.0721$                                  | $-0.2828 \pm 0.1442$                                                          |
| 0.875 - 1.000      | 13.1            | -0.85                  | $1.62\pm0.08$                | $0.47\pm0.15$                                           | $12.2983 \pm 0.0783$                                 | $-1.0309 \pm 0.1565$                                                          |
|                    |                 |                        | <u> </u>                     | $1/1 \circ 1^2$                                         | $0100 \pm 0.17$ Å                                    | 0.00 + 0.01                                                                   |

### Results are compatible. Waiting for the official numbers from Sato-san (end of month).

### Flavor tagging check

Compare parameters using pulls.



## Add PID info

### NEW SINCE LAST TIME All MC15

Compare flavour tagger parameters obtained in  $B^0 \to \pi^0 \pi^0$  after applying CSBDT selection and in control channel  $B^0 \to D^-(K^+\pi^-\pi^-)\pi^+$  (largest BF btw those used by Sato-san in FT calibration).

| <i>r</i> - Interval                             | $arepsilon_{i}$                                   | $\Delta \varepsilon_i$          | $w_i \pm \delta w_i$                                                       | $\Delta w_i \pm \delta \Delta w_i$                                       | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$                                                             | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$                           |
|-------------------------------------------------|---------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 0.000 - 0.100                                   | 17.1                                              | 0.22                            | $47.54 \pm 0.26$                                                           | $2.60\pm0.52$                                                            | $0.0414 \pm 0.0087$                                                                                              | $-0.0866 \pm 0.0212$                                                                         |
| 0.100 - 0.250                                   | 16.6                                              | 0.06                            | $40.97\pm0.26$                                                             | $1.01\pm0.52$                                                            | $0.5417 \pm 0.0311$                                                                                              | $-0.1196 \pm 0.0631$                                                                         |
| 0.250 - 0.500                                   | 21.1                                              | 0.85                            | $30.02\pm0.21$                                                             | $0.34\pm0.43$                                                            | $3.3760 \pm 0.0737$                                                                                              | $0.0203 \pm 0.1471$                                                                          |
| 0.500 - 0.625                                   | 11.8                                              | -0.38                           | $20.87\pm0.25$                                                             | $1.84\pm0.51$                                                            | $3.9966 \pm 0.0732$                                                                                              | $-0.6337 \pm 0.1479$                                                                         |
| 0.625 - 0.750                                   | 11.5                                              | -0.07                           | $15.08\pm0.23$                                                             | $0.60\pm0.45$                                                            | $5.5858 \pm 0.0797$                                                                                              | $-0.2268 \pm 0.1598$                                                                         |
| 0.750 - 0.875                                   | 8.6                                               | 0.06                            | $8.31\pm0.20$                                                              | $0.56\pm0.40$                                                            | $5.9602 \pm 0.0712$                                                                                              | $-0.1181 \pm 0.1425$                                                                         |
| 0.875 - 1.000                                   | 13.4                                              | -0.74                           | $1.67\pm0.07$                                                              | $0.24\pm0.15$                                                            | $12.5174 \pm 0.0785$                                                                                             | $-0.8171 \pm 0.1573$                                                                         |
| Total                                           |                                                   |                                 | $\varepsilon_{eff} = \sum$                                                 | $\sum_i \varepsilon_i \cdot \langle 1 - 2w_i \rangle^2$                  | $= 32.02 \pm 0.17  \Delta \varepsilon$                                                                           | $_{eff} = -1.98 \pm 0.34$                                                                    |
|                                                 |                                                   |                                 |                                                                            |                                                                          |                                                                                                                  | DID                                                                                          |
| <i>r</i> - Interval                             | $arepsilon_i$                                     | $\Delta \varepsilon_i$          | $w_i \pm \delta w_i$                                                       | $\Delta w_i \pm \delta \Delta w_i$                                       | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$                                                             | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$                           |
| 0.000 - 0.100                                   | 16.5                                              | 0.22                            | $47.63 \pm 0.26$                                                           | $2.52\pm0.53$                                                            | $0.0373 \pm 0.0083$                                                                                              | $-0.0787 \pm 0.0202$                                                                         |
| 0.100 - 0.250                                   | 16.2                                              | 0.06                            | $40.99 \pm 0.26$                                                           | $0.90\pm0.52$                                                            | $0.5265 \pm 0.0307$                                                                                              | $-0.1038 \pm 0.0620$                                                                         |
| 0.250 - 0.500                                   | 20.9                                              | 0.80                            | $30.03 \pm 0.22$                                                           | $0.30\pm0.43$                                                            | $3.3337 \pm 0.0731$                                                                                              | $0.0288 \pm 0.1459$                                                                          |
| 0.500 - 0.625                                   | 11 🗖                                              | 0.91                            | $00.01 \pm 0.05$                                                           | 1 FO + 0 F1                                                              | 0.0000 + 0.0700                                                                                                  | 0 = 0 = 0 + 0 + 4 = 1                                                                        |
| 0.000 0.010                                     | 11.1                                              | -0.31                           | $20.91 \pm 0.25$                                                           | $1.59 \pm 0.51$                                                          | $3.9692 \pm 0.0729$                                                                                              | $-0.5378 \pm 0.1471$                                                                         |
| 0.625 - 0.750                                   | 11.7 $11.6$                                       | $-0.31 \\ -0.07$                | $20.91 \pm 0.25$<br>$15.07 \pm 0.22$                                       | $1.59 \pm 0.51$<br>$0.63 \pm 0.45$                                       | $3.9692 \pm 0.0729$<br>$5.6428 \pm 0.0800$                                                                       | $-0.5378 \pm 0.1471$<br>$-0.2368 \pm 0.1603$                                                 |
| 0.625 - 0.750<br>0.750 - 0.875                  | 11.7 $11.6$ $8.8$                                 | -0.31<br>-0.07<br>0.03          | $20.91 \pm 0.25$<br>$15.07 \pm 0.22$<br>$8.31 \pm 0.20$                    | $1.59 \pm 0.51$<br>$0.63 \pm 0.45$<br>$0.50 \pm 0.40$                    | $\begin{array}{c} 3.9692 \pm 0.0729 \\ 5.6428 \pm 0.0800 \\ 6.1016 \pm 0.0719 \end{array}$                       | $-0.5378 \pm 0.1471$<br>$-0.2368 \pm 0.1603$<br>$-0.1233 \pm 0.1439$                         |
| 0.625 - 0.750<br>0.750 - 0.875<br>0.875 - 1.000 | $     11.7 \\     11.6 \\     8.8 \\     14.3   $ | -0.31<br>-0.07<br>0.03<br>-0.74 | $20.91 \pm 0.25$<br>$15.07 \pm 0.22$<br>$8.31 \pm 0.20$<br>$1.67 \pm 0.07$ | $1.59 \pm 0.51$<br>$0.63 \pm 0.45$<br>$0.50 \pm 0.40$<br>$0.20 \pm 0.14$ | $\begin{array}{c} 3.9692 \pm 0.0729 \\ 5.6428 \pm 0.0800 \\ 6.1016 \pm 0.0719 \\ 13.3349 \pm 0.0806 \end{array}$ | $-0.5378 \pm 0.1471$<br>$-0.2368 \pm 0.1603$<br>$-0.1233 \pm 0.1439$<br>$-0.8013 \pm 0.1615$ |

## Add PID info

### NEW SINCE LAST TIME All MC15

Compare flavour tagger parameters obtained in  $B^0 \to \pi^0 \pi^0$  after applying CSBDT selection and in control channel  $B^0 \to D^-(K^+\pi^-\pi^-)\pi^+$  (largest BF btw those used by Sato-san in FT calibration).



### NEW SINCE LAST TIME

### CS validation

Validate CS on control channel  $B^- \to D^0(K^+\pi^-\pi^0)\pi^-$ . Obtain binomial efficiency of CS selection using Francis CS and mine.

Tried using  $B^0 \to D^0(K^+\pi^-\pi^0)\pi^0$  but small BF.

Still some problems in the fit.

At the current precision, using  $\Delta r$ and  $\Delta Z$  as inputs does not bias the result after CS selection.

Need to check this again when official numbers will be available.

### CSBDT comparison

### 190 fb<sup>-1</sup> analysis

- 24 variables.
- Training using sideband data.
- Validate only CSBDT output in data and MC.
- AUC = 0.948.

### This analysis

- 19 variables including Δr and ΔZ: no bias on flavour tagger.
- Validation of input variables.
- Include variables with larger correlation with fit variables (but no sculpting).
- Training using sideband data or offresonance data.
- AUC = 0.96

### 1% improvement in AUC.

Next step: compare performance in data using control channel.

## ho MVA

## ho MVA

Beyond the CS: identify the principal bkg offenders.

|                                   | Events that have at least a $\pi^0$ from |
|-----------------------------------|------------------------------------------|
| ρ(770)+                           | 47.1%                                    |
| Z <sup>o</sup> (direct from e+e-) | 75.0%                                    |

Large number of continuum  $\pi^0$ 's come from a  $\rho$ . Develop a specific BDT to identify them (in addition to the default CSBDT).

Combine each track in the event with each  $\pi^0$ .

Use kinematic and angular variables to distinguish between ho's and other particles.

Challenge: the number of combinations ( $\rho^+$  candidates) is large. Not obvious how to exploit it efficiently in bkg rejection strategy.



### $\rho$ variables

Use kinematic and angular variables to distinguish between  $\rho$ 's and other particles.



 $\rho$  mass and helicity angle have large discriminating power.

### Max hoMVA distribution

Each candidate has for example 20  $\rho$  sub-candidates. Take the one with largest rhoMVA (the one more similar to a  $\rho$ ).



Variable shows separation, modelling discrepancy is acceptable. Additional discriminating power may be available from using multiple  $\rho^+$  candidates.

### Use $\rho {\rm MVA}$ as input of the CSBDT



Inclusion of  $\rho$ MVA gives no improvement

### Summary

First steps towards LS1 update of  $B^0 \rightarrow \pi^0 \pi^0$  analysis. Use Francis result as reference.

Today focus on selection:

- revisited photonMVA (use new variables with good data/MC agreement)

 $\rightarrow$  3% improvement. At given  $\varepsilon_{\rm sig'}$  always better bkg rejection.

- revisited CSBDT: add  $B_{\rm Tag}$  variables (no bias on FT). Use data to train BDT, validate inputs  $\rightarrow$  1% improvement.

- introduced  $\rho$ BDT: improvement is negligible, do not add it in analysis  $\rightarrow$  no improvement.

Don't expect major breakthrough wrt 190fb<sup>-1</sup> analysis, but obtained various small improvements and refinements.

### Backup

### ClusterTiming (rel-06)











### Inputs validation — Signal only



### Inputs validation — Signal only



### Inputs validation — Signal only



### CSMVA inputs

#### Inputs (after pruning)

7 Kakuno-Super-Fox-Wolfram moments

cosTBTO

1 CleoCone

cosTheta\*

R2

thrustOm

ΔZ (BTag)

∆r (BTag)

thrustAxisCosTheta

angle between  $\pi^{_{0}\prime}\!s$ 

cosHelicityAngle

KSFWVariableset

KSFWVariablesmm2

### Flavor tagging check: no $\Delta Z$ , no $\Delta r$

Compare flavour tagger parameters obtained in  $B^0 \to \pi^0 \pi^0$  after applying CSBDT selection and in control channel  $B^0 \to D^-(K^+\pi^-\pi^-)\pi^+$  (largest BF btw those used by Sato-san in FT calibration). Use MC15.

 $B^0 \rightarrow -0.0$ 

|                    |                 |                        |                            |                                                           |                                                      |                                                                    | 10         |
|--------------------|-----------------|------------------------|----------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|------------|
| <i>r</i> -Interval | $\varepsilon_i$ | $\Delta \varepsilon_i$ | $w_i \pm \delta w_i$       | $\Delta w_i \pm \delta \Delta w_i$                        | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$ | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$ |            |
| 0.000 - 0.100      | 17.1            | 0.23                   | $47.64 \pm 0.26$           | $2.35\pm0.53$                                             | $0.0382 \pm 0.0085$                                  | $-0.0752 \pm 0.0204$                                               | -          |
| 0.100 - 0.250      | 16.6            | 0.09                   | $41.07\pm0.26$             | $1.13\pm0.53$                                             | $0.5287 \pm 0.0313$                                  | $-0.1304 \pm 0.0634$                                               |            |
| 0.250 - 0.500      | 21.2            | 0.81                   | $30.04\pm0.22$             | $0.36 \pm 0.43$                                           | $3.3799 \pm 0.0749$                                  | $0.0071 \pm 0.1495$                                                |            |
| 0.500 - 0.625      | 11.8            | -0.36                  | $20.94 \pm 0.26$           | $1.95\pm0.51$                                             | $3.9692 \pm 0.0742$                                  | $-0.6524 \pm 0.1499$                                               |            |
| 0.625 - 0.750      | 11.4            | -0.08                  | $15.17\pm0.23$             | $0.72\pm0.46$                                             | $5.5267 \pm 0.0806$                                  | $-0.2681 \pm 0.1618$                                               |            |
| 0.750 - 0.875      | 8.5             | 0.07                   | $8.27 \pm 0.20$            | $0.44 \pm 0.41$                                           | $5.9513 \pm 0.0722$                                  | $-0.0788 \pm 0.1445$                                               |            |
| 0.875 - 1.000      | 13.4            | -0.76                  | $1.68\pm0.08$              | $0.19 \pm 0.15$                                           | $12.5437 \pm 0.0799$                                 | $-0.8107 \pm 0.1601$                                               | -          |
| Total              |                 |                        | $\varepsilon_{eff} = \sum$ | $\sum_{i} \varepsilon_i \cdot \langle 1 - 2w_i \rangle^2$ | $^{2} = 31.94 \pm 0.17  \Delta \varepsilon$          | $c_{eff} = -2.01 \pm 0.35$                                         | -          |
| T / 1              |                 |                        |                            | A   5 A                                                   |                                                      | $B^0 \rightarrow D^-(K^+)$                                         | $	au^-\pi$ |
| <i>r</i> -Interval | $arepsilon_i$   | $\Delta \varepsilon_i$ | $w_i \pm \delta w_i$       | $\Delta w_i \pm \delta \Delta w_i$                        | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$ | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$ |            |
| 0.000 - 0.100      | 17.7            | 0.27                   | $47.27 \pm 0.26$           | $2.58 \pm 0.51$                                           | $0.0526 \pm 0.0099$                                  | $-0.0986 \pm 0.0217$                                               |            |
| 0.100 - 0.250      | 16.8            | 0.26                   | $41.09 \pm 0.26$           | $1.07 \pm 0.52$                                           | $0.5322 \pm 0.0311$                                  | $-0.1189 \pm 0.0623$                                               |            |
| 0.250 - 0.500      | 21.1            | 0.60                   | $30.37 \pm 0.22$           | $0.24 \pm 0.43$                                           | $3.2461 \pm 0.0728$                                  | $0.0138 \pm 0.1457$                                                |            |
| 0.500 - 0.625      | 11.5            | 0.06                   | $21.40 \pm 0.26$           | $1.66 \pm 0.52$                                           | $3.7607 \pm 0.0723$                                  | $-0.4175 \pm 0.1445$                                               |            |
| 0.625 - 0.750      | 11.2            | -0.13                  | $15.23 \pm 0.23$           | $0.97 \pm 0.46$                                           | $5.4192 \pm 0.0794$                                  | $-0.3649 \pm 0.1588$                                               |            |
| 0.750 - 0.875      | 8.6             | -0.22                  | $8.46 \pm 0.20$            | $0.46 \pm 0.41$                                           | $5.9675 \pm 0.0721$                                  | $-0.2828 \pm 0.1442$                                               |            |
| 0.875 - 1.000      | 13.1            | -0.85                  | $1.62 \pm 0.08$            | $0.47 \pm 0.15$                                           | $12.2983 \pm 0.0783$                                 | $-1.0309 \pm 0.1565$                                               |            |
| Total              |                 |                        | $\varepsilon_{eff} = \sum$ | $\sum_{i} \varepsilon_i \cdot \langle 1 - 2w_i \rangle^2$ | $= 31.28 \pm 0.17  \Delta \varepsilon_e$             | $e_{ff} = -2.30 \pm 0.34$                                          |            |

### Results are compatible. Waiting for the official numbers from Sato-san (end of month).

### Flavor tagging check: no $\Delta Z$ , no $\Delta r$

Compare flavour tagger parameters obtained in  $B^0 \rightarrow \pi^0 \pi^0$  after applying CSBDT selection including and excluding  $\Delta Z$  and  $\Delta r$ .

| Τ, 1                                                                                                                         |                                                                                                          |                                                 |                                                                                                                                       |                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                                                                                                      |                                        |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <i>r</i> -Interval                                                                                                           | $\varepsilon_i$                                                                                          | $\Delta \varepsilon_i$                          | $w_i \pm \delta w_i$                                                                                                                  | $\Delta w_i \pm \delta \Delta w_i$                                                                                                                 | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$                                                                                                                            | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$                                                                                                                   |                                        |
| 0.000 - 0.100                                                                                                                | 17.1                                                                                                     | 0.23                                            | $47.64\pm0.26$                                                                                                                        | $2.35\pm0.53$                                                                                                                                      | $0.0382 \pm 0.0085$                                                                                                                                                             | $-0.0752 \pm 0.0204$                                                                                                                                                                 |                                        |
| 0.100 - 0.250                                                                                                                | 16.6                                                                                                     | 0.09                                            | $41.07\pm0.26$                                                                                                                        | $1.13\pm0.53$                                                                                                                                      | $0.5287 \pm 0.0313$                                                                                                                                                             | $-0.1304 \pm 0.0634$                                                                                                                                                                 |                                        |
| 0.250 - 0.500                                                                                                                | 21.2                                                                                                     | 0.81                                            | $30.04\pm0.22$                                                                                                                        | $0.36 \pm 0.43$                                                                                                                                    | $3.3799 \pm 0.0749$                                                                                                                                                             | $0.0071 \pm 0.1495$                                                                                                                                                                  |                                        |
| 0.500 - 0.625                                                                                                                | 11.8                                                                                                     | -0.36                                           | $20.94 \pm 0.26$                                                                                                                      | $1.95\pm0.51$                                                                                                                                      | $3.9692 \pm 0.0742$                                                                                                                                                             | $-0.6524 \pm 0.1499$                                                                                                                                                                 | $B^0 \to \pi^0 \pi$                    |
| 0.625 - 0.750                                                                                                                | 11.4                                                                                                     | -0.08                                           | $15.17\pm0.23$                                                                                                                        | $0.72\pm0.46$                                                                                                                                      | $5.5267 \pm 0.0806$                                                                                                                                                             | $-0.2681 \pm 0.1618$                                                                                                                                                                 |                                        |
| 0.750 - 0.875                                                                                                                | 8.5                                                                                                      | 0.07                                            | $8.27\pm0.20$                                                                                                                         | $0.44\pm0.41$                                                                                                                                      | $5.9513 \pm 0.0722$                                                                                                                                                             | $-0.0788 \pm 0.1445$                                                                                                                                                                 |                                        |
| 0.875 - 1.000                                                                                                                | 13.4                                                                                                     | -0.76                                           | $1.68\pm0.08$                                                                                                                         | $0.19\pm0.15$                                                                                                                                      | $12.5437 \pm 0.0799$                                                                                                                                                            | $-0.8107 \pm 0.1601$                                                                                                                                                                 |                                        |
| Total                                                                                                                        |                                                                                                          |                                                 | $\varepsilon_{eff} = \sum$                                                                                                            | $\sum_{i} \varepsilon_i \cdot \langle 1 - 2w_i \rangle^2$                                                                                          | $= 31.94 \pm 0.17  \Delta \varepsilon_{e}$                                                                                                                                      | $_{eff} = -2.01 \pm 0.35$                                                                                                                                                            |                                        |
|                                                                                                                              |                                                                                                          |                                                 |                                                                                                                                       | _ 0                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                                      |                                        |
|                                                                                                                              |                                                                                                          | Δ                                               | 1 5                                                                                                                                   |                                                                                                                                                    |                                                                                                                                                                                 | A   S A                                                                                                                                                                              |                                        |
| <i>r</i> -Interval                                                                                                           | $arepsilon_i$                                                                                            | $\Delta \varepsilon_i$                          | $w_i \pm \delta w_i$                                                                                                                  | $\Delta w_i \pm \delta \Delta w_i$                                                                                                                 | $\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$                                                                                                                            | $\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$                                                                                                                   |                                        |
| 0.000 - 0.100                                                                                                                | 17.1                                                                                                     | 0.22                                            | $47.54\pm0.26$                                                                                                                        | $2.60 \pm 0.52$                                                                                                                                    |                                                                                                                                                                                 |                                                                                                                                                                                      |                                        |
| 0.100 - 0.250                                                                                                                | 100                                                                                                      |                                                 |                                                                                                                                       | $2.00 \pm 0.02$                                                                                                                                    | $0.0414 \pm 0.0087$                                                                                                                                                             | $-0.0866 \pm 0.0212$                                                                                                                                                                 |                                        |
| 0.100 0.200                                                                                                                  | 10.0                                                                                                     | 0.06                                            | $40.97\pm0.26$                                                                                                                        | $1.01 \pm 0.52$                                                                                                                                    | $\begin{array}{c} 0.0414 \pm 0.0087 \\ 0.5417 \pm 0.0311 \end{array}$                                                                                                           | $\begin{array}{c} -0.0866 \pm 0.0212 \\ -0.1196 \pm 0.0631 \end{array}$                                                                                                              |                                        |
| 0.250 - 0.500                                                                                                                | $\frac{16.6}{21.1}$                                                                                      | $\begin{array}{c} 0.06 \\ 0.85 \end{array}$     | $40.97 \pm 0.26$<br>$30.02 \pm 0.21$                                                                                                  | $1.01 \pm 0.52$<br>$0.34 \pm 0.43$                                                                                                                 | $\begin{array}{c} 0.0414 \pm 0.0087 \\ 0.5417 \pm 0.0311 \\ 3.3760 \pm 0.0737 \end{array}$                                                                                      | $\begin{array}{c} -0.0866 \pm 0.0212 \\ -0.1196 \pm 0.0631 \\ 0.0203 \pm 0.1471 \end{array}$                                                                                         | $R^0 \rightarrow \pi^0 \tau$           |
| 0.250 - 0.500<br>0.500 - 0.625                                                                                               | 16.6<br>21.1<br>11.8                                                                                     | $0.06 \\ 0.85 \\ -0.38$                         | $40.97 \pm 0.26$<br>$30.02 \pm 0.21$<br>$20.87 \pm 0.25$                                                                              | $1.01 \pm 0.52$<br>$0.34 \pm 0.43$<br>$1.84 \pm 0.51$                                                                                              | $\begin{array}{c} 0.0414 \pm 0.0087 \\ 0.5417 \pm 0.0311 \\ 3.3760 \pm 0.0737 \\ 3.9966 \pm 0.0732 \end{array}$                                                                 | $\begin{array}{c} -0.0866 \pm 0.0212 \\ -0.1196 \pm 0.0631 \\ 0.0203 \pm 0.1471 \\ -0.6337 \pm 0.1479 \end{array}$                                                                   | $B^0 	o \pi^0 \pi$                     |
| $\begin{array}{c} 0.250 - 0.250 \\ 0.250 - 0.500 \\ 0.500 - 0.625 \\ 0.625 - 0.750 \end{array}$                              | $   \begin{array}{r}     16.6 \\     21.1 \\     11.8 \\     11.5   \end{array} $                        | $0.06 \\ 0.85 \\ -0.38 \\ -0.07$                | $\begin{array}{c} 40.97 \pm 0.26 \\ 30.02 \pm 0.21 \\ 20.87 \pm 0.25 \\ 15.08 \pm 0.23 \end{array}$                                   | $\begin{array}{c} 1.01 \pm 0.52 \\ 1.01 \pm 0.52 \\ 0.34 \pm 0.43 \\ 1.84 \pm 0.51 \\ 0.60 \pm 0.45 \end{array}$                                   | $\begin{array}{c} 0.0414 \pm 0.0087 \\ 0.5417 \pm 0.0311 \\ 3.3760 \pm 0.0737 \\ 3.9966 \pm 0.0732 \\ 5.5858 \pm 0.0797 \end{array}$                                            | $\begin{array}{c} -0.0866 \pm 0.0212 \\ -0.1196 \pm 0.0631 \\ 0.0203 \pm 0.1471 \\ -0.6337 \pm 0.1479 \\ -0.2268 \pm 0.1598 \end{array}$                                             | $B^0 	o \pi^0 \pi$ with $\Delta$ r and |
| $\begin{array}{c} 0.250 - 0.200\\ 0.250 - 0.500\\ 0.500 - 0.625\\ 0.625 - 0.750\\ 0.750 - 0.875\end{array}$                  | $   \begin{array}{r}     16.6 \\     21.1 \\     11.8 \\     11.5 \\     8.6   \end{array} $             | $0.06 \\ 0.85 \\ -0.38 \\ -0.07 \\ 0.06$        | $\begin{array}{c} 40.97 \pm 0.26 \\ 30.02 \pm 0.21 \\ 20.87 \pm 0.25 \\ 15.08 \pm 0.23 \\ 8.31 \pm 0.20 \end{array}$                  | $\begin{array}{c} 1.01 \pm 0.52 \\ 1.01 \pm 0.52 \\ 0.34 \pm 0.43 \\ 1.84 \pm 0.51 \\ 0.60 \pm 0.45 \\ 0.56 \pm 0.40 \end{array}$                  | $\begin{array}{c} 0.0414 \pm 0.0087 \\ 0.5417 \pm 0.0311 \\ 3.3760 \pm 0.0737 \\ 3.9966 \pm 0.0732 \\ 5.5858 \pm 0.0797 \\ 5.9602 \pm 0.0712 \end{array}$                       | $\begin{array}{c} -0.0866 \pm 0.0212 \\ -0.1196 \pm 0.0631 \\ 0.0203 \pm 0.1471 \\ -0.6337 \pm 0.1479 \\ -0.2268 \pm 0.1598 \\ -0.1181 \pm 0.1425 \end{array}$                       | $B^0 	o \pi^0 \pi$ with $\Delta$ r and |
| $\begin{array}{c} 0.250 - 0.200\\ 0.250 - 0.500\\ 0.500 - 0.625\\ 0.625 - 0.750\\ 0.750 - 0.875\\ 0.875 - 1.000 \end{array}$ | $   \begin{array}{r}     16.6 \\     21.1 \\     11.8 \\     11.5 \\     8.6 \\     13.4   \end{array} $ | 0.06<br>0.85<br>-0.38<br>-0.07<br>0.06<br>-0.74 | $\begin{array}{c} 40.97 \pm 0.26 \\ 30.02 \pm 0.21 \\ 20.87 \pm 0.25 \\ 15.08 \pm 0.23 \\ 8.31 \pm 0.20 \\ 1.67 \pm 0.07 \end{array}$ | $\begin{array}{c} 2.00 \pm 0.02 \\ 1.01 \pm 0.52 \\ 0.34 \pm 0.43 \\ 1.84 \pm 0.51 \\ 0.60 \pm 0.45 \\ 0.56 \pm 0.40 \\ 0.24 \pm 0.15 \end{array}$ | $\begin{array}{c} 0.0414 \pm 0.0087 \\ 0.5417 \pm 0.0311 \\ 3.3760 \pm 0.0737 \\ 3.9966 \pm 0.0732 \\ 5.5858 \pm 0.0797 \\ 5.9602 \pm 0.0712 \\ 12.5174 \pm 0.0785 \end{array}$ | $\begin{array}{c} -0.0866 \pm 0.0212 \\ -0.1196 \pm 0.0631 \\ 0.0203 \pm 0.1471 \\ -0.6337 \pm 0.1479 \\ -0.2268 \pm 0.1598 \\ -0.1181 \pm 0.1425 \\ -0.8171 \pm 0.1573 \end{array}$ | $B^0 	o \pi^0 \pi$ with $\Delta$ r and |

#### Results are compatible. Inclusion of $\Delta Z$ and $\Delta r$ doesn't bias FT.

### Photon MVA validation

Apply photonMVA to  $D^* \to D^0(K\pi\pi^0)\pi$  data after applying signal  $\pi^0$  selections and reweighting candidates based on signal  $p(\pi^0)$ .

Compare background rejection at given signal efficiency.

Obtain signal efficiency as

