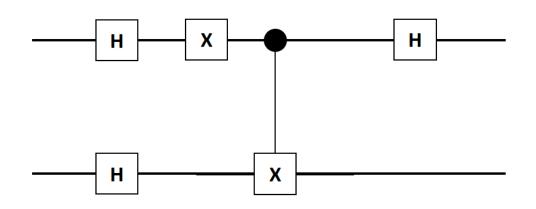
Noisy Gates for Quantum Computing

Quantum Computing @INFN

Bologna, 14-15 November 2022

Michele Vischi University of Trieste

Real Quantum Computers



In an ideal (= isolated) world, quantum computers run beautifully

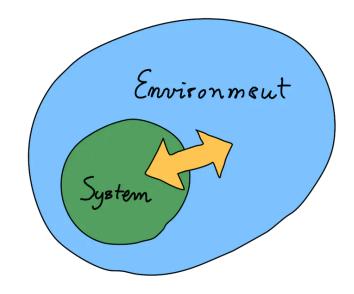
In real life, they are subject to **noise**

- Quantum Error Correction, but even more qubits are needed
- NISQ (Noise Intermediate-Scale Quantum) devices

Study the noise

A **proper theoretical modelling** of the effect of the environment on a quantum systems allows to:

- Have a physical understanding of the sources of noise
- Suggest strategies to mitigate errors



 Perform accurate simulations to predict how the performances scale with the number of qubits/gates.

Georgopoulos, K., Emary, C., & Zuliani, P. (2021). Modeling and simulating the noisy behavior of near-term quantum computers. *Physical Review A*, 104(6), 062432. Sun, J., Yuan, X., Tsunoda, T., Vedral, V., Benjamin, S. C., & Endo, S. (2021). Mitigating realistic noise in practical noisy intermediate-scale quantum devices. *Physical Review Applied*, 15(3), 034026.

Guerreschi, G. G., & Matsuura, A. Y. (2019). QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. *Scientific reports*, *9*(1), 1-7. Xue, C., Chen, Z. Y., Wu, Y. C., & Guo, G. P. (2021). Effects of quantum noise on quantum approximate optimization algorithm. *Chinese Physics Letters*, *38*(3), 030302. Resch, S., & Karpuzcu, U. R. (2021). Benchmarking quantum computers and the impact of quantum noise. *ACM Computing Surveys (CSUR)*, *54*(7), 1-35.

Standard noise model

Breuer and Petruccione: The Theory of Open Quantum Systems, Oxford University Press (2002)

Theory of open quantum systems

$$|\psi\rangle \rightarrow \rho = |\psi\rangle\langle\psi|$$

State vector

Density matrix

$$\frac{d}{dt}\rho_t = -\frac{i}{\hbar}[H_t, \rho_t] + \sum_k \gamma_k \left[L_k \rho_t L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho_t \} \right]$$

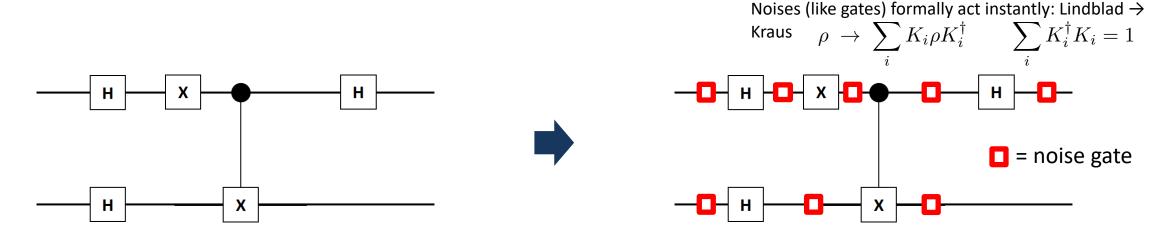
Internal evolution

Effect of the environment

Issues to deal with:

- More complicated dynamics; how to model the environment efficiently
- With the density matrix, the problem scales quadratically with the size of the system.

How to describe noises



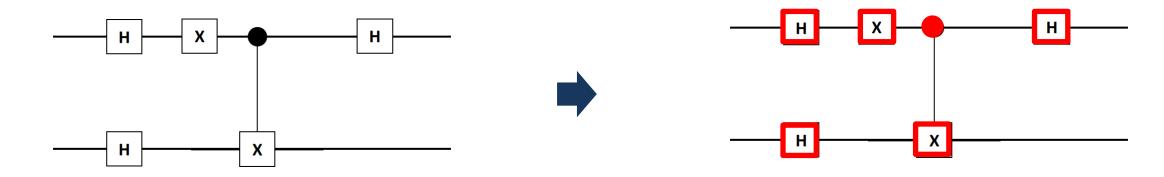
Standard noise simulation (e.g. in Qiskit)

• Gates and noise are formally **decoupled** (a sort of Trotterizzation), because time scales are small (IBM: gate time $\sim 10^{-8}$ s, decoherence times $\sim 10^{-4}$ s)

 Use the quantum-jump-like approach to replace the density matrix with (stochastic) state vector → stochastic dynamics

Noisy Gates

Our approach: provide a more accurate description of the noisy behaviour of a quantum computer



Noises are embedded in the gate → more realistic picture

• State vector (stochastic) description

Noisy Gates

Bassi, A., & Deckert, D. A. (2008). Noise gates for decoherent quantum circuits. *Physical Review A*, 77(3), 032323.

$$\frac{d}{dt}\rho_t = -\frac{i}{\hbar}[H_t,\rho_t] + \sum_k \gamma_k \left[L_k \rho_t L_k^\dagger - \frac{1}{2} \{L_k^\dagger L_k,\rho_t\} \right]$$

$$\text{Gate} \qquad \text{Noise}$$

$$\text{d} \left| \psi_s \right\rangle = \left[-\frac{i}{\hbar} H_s \text{d}s + \sum^{N^2-1} \left[i \epsilon \text{dW}_{k,s} - \frac{\epsilon^2}{2} \text{d}s L_k^\dagger \right] L_k \right] \left| \psi_s \right\rangle \quad \text{*-reparemetrized time in gate time units - diagonalized Lindblad in canonical form}$$

Stochastic evolution for the state vector (stochastic unravelling)

- 1) Formal equivalence: $\rho_t = \mathbb{E}[|\psi_t\rangle\langle\psi_t|]$
- 2) The dynamics is **linear**, therefore it can be represented as a gate (noisy gate)

$$|\psi_{s=1}(\boldsymbol{\xi})\rangle = \bar{N}(\boldsymbol{\xi}) |\psi_0\rangle$$

- diagonalized Lindblad in canonical form

^k Due to the noises **ξ**, the gate is not unitary and norm preserving. But at the statistical level the trace is preserved, and one recovers the standard (Lindblad) behaviour.

Solution of the SDE

Gardiner, C. W. (1985). *Handbook of stochastic methods* (Vol. 3, pp. 2-20). Berlin: Springer. Arnold, L. (1974). Stochastic differential equations. New York: John Wiley & Sons

$$\bar{\mathbf{N}}(\boldsymbol{\xi}) = \mathbf{U}_g e^{\Lambda} e^{\bar{\Xi}(\boldsymbol{\xi})}$$

$$U_g$$
 = noiseless gate

$$s \in [0, 1]$$

$$\Lambda = -\frac{\epsilon^2}{2} \int_0^1 \mathrm{d}s \sum_{k=1}^{N^2-1} \left[\mathrm{L}_{k,s}^\dagger \mathrm{L}_{k,s} - \mathrm{L}_{k,s}^2 \right] \text{ Deterministic contribution of the noise, to order O(ϵ^2)}$$

$$\Xi(\boldsymbol{\xi}) := i\epsilon \sum_{k=1}^{N^2 - 1} \int_0^1 dW_{k,s} L_{k,s}$$

the noise, to order $O(\epsilon^2)$

Stochastic contribution of

- Find $H(U_g)$ and L_k for a given device
- Compute $L_{k,s}$ and Λ
- Compute stochastic properties of Itô processes in $\Xi(\xi)$
- Sample to get a realization of $\overline{N}(\xi)$

Operators in the interaction picture

IBMQ devices

Krantz, P., Kjaergaard, M., Yan, F., Orlando, T. P., Gustavsson, S., & Oliver, W. D. (2019). A quantum engineer's guide to superconducting qubits. Applied Physics Reviews, 6(2), 021318. Georgopoulos, K., Emary, C., & Zuliani, P. (2021). Modeling and simulating the noisy behavior of near-term quantum computers. Physical Review A, 104(6), 062432.

Gates

 $\boldsymbol{\theta}$: rotation angle

φ: phase, realizes virtual Z gates

Native gate set $\{RZ(\phi), X, SX, CNOT\}$

Cross resonance (CR) gate

$$H(\theta, \phi) = \frac{\theta \hbar}{2} R_{xy}(\phi)$$
$$R_{xy}(\phi) = \cos(\phi) X + \sin(\phi) Y$$

$$H(\theta,\phi) = \frac{\theta\hbar}{2} R_{xy}(\phi)$$

$$R_{xy}(\phi) = \cos(\phi)X + \sin(\phi)Y$$

$$H^{(1,2)}(\theta,\phi) = \frac{\hbar\theta}{2} Z^{(1)} \otimes R_{xy}^{(2)}$$

$$R_{xy}(\phi) = \cos(\phi)X + \sin(\phi)Y$$

Note: how to implement the pulse

Noises

- -Single qubit depolarization: γ_d
- -Single qubit amplitude and phase damping: γ_1, γ_2

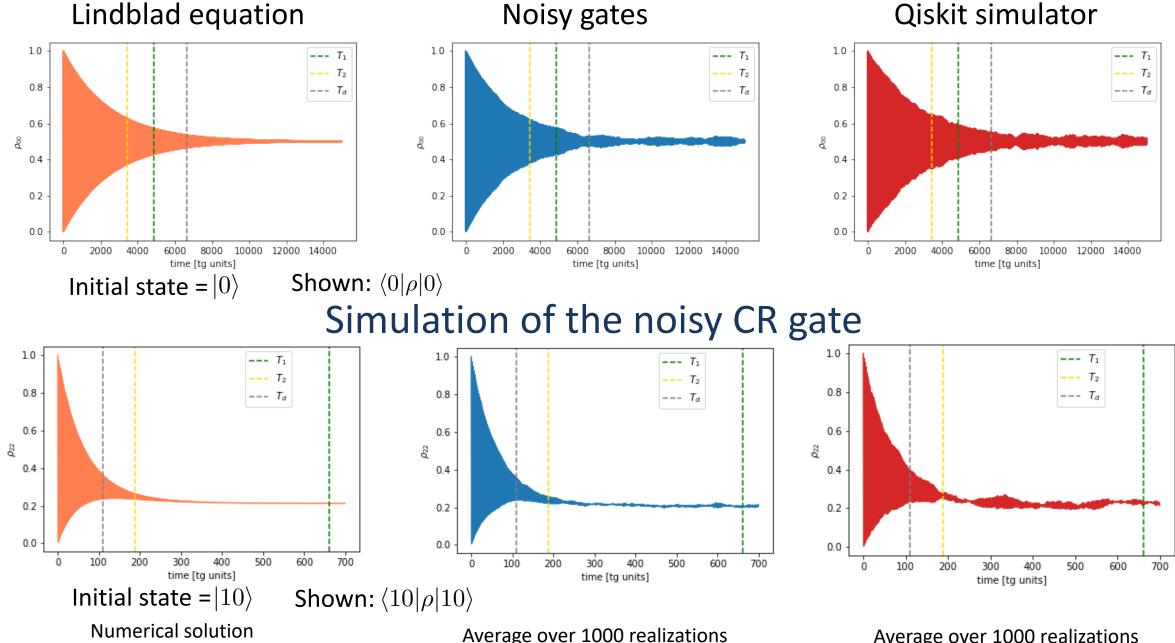
$$L_{1} = \sqrt{\frac{\lambda_{1}}{\lambda}} \sigma^{-}, \quad L_{2} = \sqrt{\frac{\lambda_{2}}{\lambda}} \sigma^{+}, \quad L_{3} = \sqrt{\frac{\lambda_{3}}{\lambda}} Z_{3}$$

$$\lambda_{1} = 2\gamma_{d}, \quad \lambda_{2} = 2\gamma_{d} + \gamma_{1}, \quad \lambda_{3} = \gamma_{d} + \gamma_{z}$$

$$\lambda = \lambda_{1} + \lambda_{2} + \lambda_{3}$$

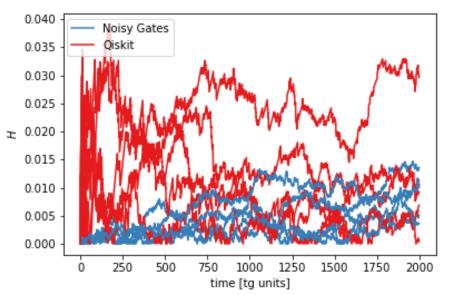
$$\lambda_k \sim 10^4 \text{Hz}$$
 $t_g \sim 10^{-8} s$
 $\epsilon = \sqrt{\lambda t_g} \ll 1$

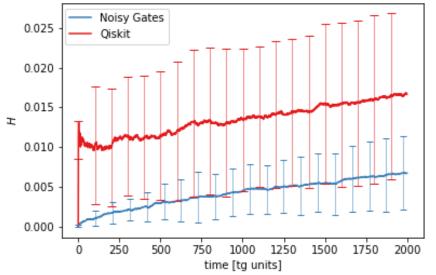
Simulation of the noisy X gate



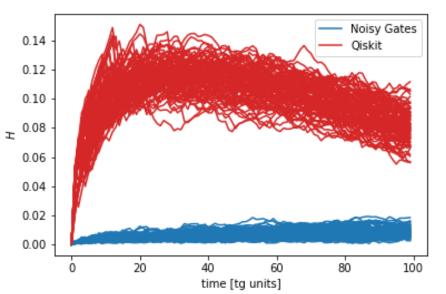
Average over 1000 realizations

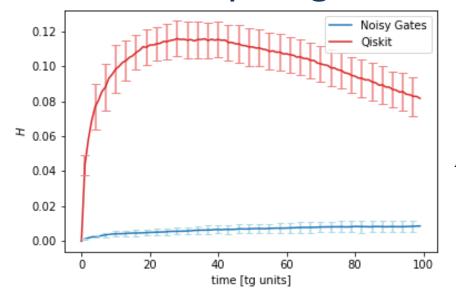
Simulation of the noisy X gate





Simulation of the noisy CR gate





100 independent simulations each including 1000 runs

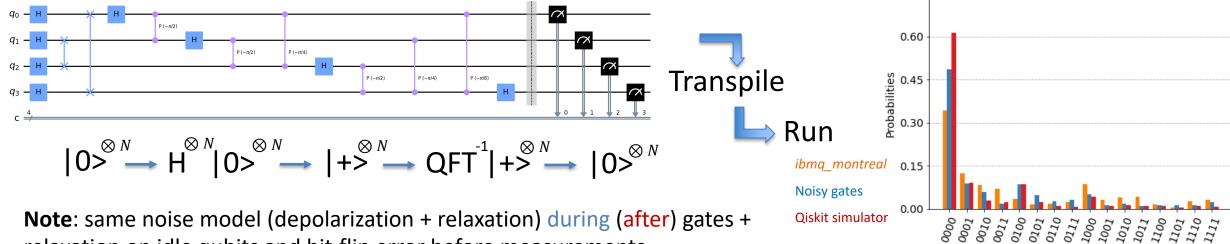
Hellinger Distance

Lindblad and noisy gates

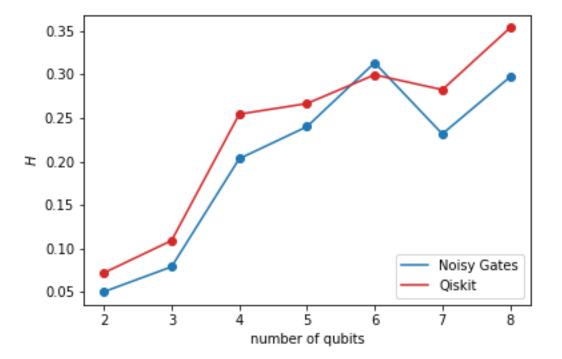
Lindblad and Qiskit simulator

$$H(P,Q) = \frac{1}{\sqrt{2}} \sqrt{\sum_{i=1}^{n} (\sqrt{p_i} - \sqrt{q_i})^2}$$

The inverse QFT algorithm



Note: same noise model (depolarization + relaxation) during (after) gates + relaxation on idle qubits and bit-flip error before measurements



Hellinger Distance

ibmq montreal and noisy gates

ibmq montreal and Qiskit simulator

Future work

Better analysis of noises, especially for two qubit gates

Application to algorithm of interest, to extract "long-time" behaviour

The Team & Collaborators

Sandro Donadi

Giovanni Di Bartolomeo

Francesco Cesa

Michele Grossi @CERN

Thank you for your attention