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CERN Quantum Technology Initiative
Discussions about a Quantum Technology Initiative took place in 2020 with representatives of quantum initiatives in 
the CERN Member States, the CERN community, the Worldwide LHC Computing Grid, the CERN Scientific Computing 
Forum, with LHC experiments and the HEP Software Foundation

T1 - Scientific and Technical 
Development and Capacity 

Building

T2 - Co-development

T3 - Community Building

T4 - Integration with national and 
international initiatives and 

programmes
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https://doi.org/10.5281/zenodo.5553774



• Assess the areas of 
potential quantum 
advantage in HEP 
applications (QML, 
classification, anomaly 
detection, tracking)

• Co-develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Scientific Objectives

Computing & Algorithms

• Identify and develop 
techniques for quantum 
simulation in collider 
physics, QCD, cosmology 
within and beyond the SM

• Co-develop quantum 
computing and sensing 
approaches by providing 
theoretical foundations 
to the identifications of 
the areas of interest

Simulation & Theory

• Develop and promote 
expertise in quantum 
sensing in low- and high-
energy physics 
applications

• Develop quantum sensing 
approaches with 
emphasis on low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies relevant to 
quantum infrastructures
(time synch, frequency 
distribution, lasers)

• Contribute to the 
deployment and 
validation of quantum 
infrastructures

• Assess requirements and 
impact of quantum 
communication on 
computing applications
(security, privacy)

Communications & 
Networks
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CERN IBM Quantum Hub

Since 2021 CERN is a “Hub Member” in the IBM Quantum 
Network and has welcome two new members in 2022

A project-based hub dedicated to quantum computing 
applications to fundamental physics research, 
computational chemistry, computational biology, and related 
fields
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Computing & Algorithms

Assess the areas of 
potential quantum 
advantage in HEP -
classification, 
anomaly detection, 
clustering, generative 
model

Collaborate to the 
development of 
shared, hybrid 
classic-quantum 
infrastructures

Develop common 
libraries of 
algorithms 
methods, tools -
benchmark classical 
frameworks and 
automatize procedure 
on Hardware
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You got your data: what’s next?

Unsupervised ML
Unlabeled data.
ML finds patterns in your data.
Indirect evaluation.

Supervised ML

Labeled data, i.e., data with 
defined output.

A model is trained giving this 
data and you have direct 
evaluation.

Quantum
Computing

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

regression
classification

clustering
anomaly detec
feat reduction
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Machine Learning Model Lyfecycle

Data 
Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation
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Quantum Machine Learning Model Lyfecycle

Data 
Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation

Data Reduction
Data Encoding [1,2,3]

[1] Robust data encodings for quantum classifiers, Ryan 
LaRose and Brian Coyle, Phys. Rev. A 102, 032420 
[2] Quantum convolutional neural network for classical data 
classification, https://arxiv.org/pdf/2108.00661.pdf
[3] Quantum Support Vector Machines for Continuum 
Suppression in B Meson Decays, 
https://arxiv.org/abs/2103.12257

The quantum advantage of 
many known QML 

algorithms is impeded by an 
input or output bottleneck

Read Out

Trainability (BP…)

https://arxiv.org/pdf/2108.00661.pdf
https://arxiv.org/abs/2103.12257


Variational algorithms - EXPLICIT
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1-A. Bogatskiy et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020
2-J. Meyer et al “Exploiting symmetry in variational quantum machine learning“, https://arxiv.org/abs/2205.06217
3-S.Jerbi at all., Quantum Machine Learning Beyond Kernel Methods https://arxiv.org/abs/2110.13162
4- Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021)

QML models implementations for NISQ

Feature map Parametrized circuit

A linear classifier in the quantum feature space!

• Flexible parametric ansatz: design can 
leverage data symmetries1,2

• Can use gradient-free methods or
stochastic gradient-descent

• Data Embedding can be learned
• Better generalization2,3

https://arxiv.org/abs/2205.06217
https://arxiv.org/abs/2110.13162


Variational algorithms - EXPLICIT
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QML models implementations for NISQ

• Flexible parametric ansatz: design can 
leverage data symmetries1,2

• Can use gradient-free methods or
stochastic gradient-descent

• Data Embedding can be learned
• Better generalization2,3

https://github.com/fizisist/LorentzGroupNetwork

A unitary representation of a symmetry

group S can arise from data symmetries

when the data points are suitably

encoded or alternatively from physical

considerations of a variational problem2. 

https://arxiv.org/abs/2205.06217
https://arxiv.org/abs/2110.13162


Kernel methods - IMPLICIT
• Feature maps as quantum kernels
• Convex losses, global minimum
• Identify kernel classes that relate to specific 

data structures3

• Better accuracy2

M. Schuld, QML seminar, 03/02/21 CERN
https://indico.cern.ch/event/893116/
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QML models implementations for NISQ

x z
1-A. Bogatskiy et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020
2-J. Meyer et al “Exploiting symmetry in variational quantum machine learning“, https://arxiv.org/abs/2205.06217
3-S.Jerbi at all., Quantum Machine Learning Beyond Kernel Methods https://arxiv.org/abs/2110.13162
4- Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021)

https://arxiv.org/abs/2205.06217
https://arxiv.org/abs/2110.13162
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Double beta decay search at DUNE
• Evidence of 𝝼 as maiorana particles and lepton

number violation

• Visible at Dune Liquid Χe TPC

• Largest background is single β emission (42Αr, 

neutrons, solar neutrinos, etc.. ) + ννββ

• MC-based study with realistic detector spatial

resolution (5mm)

• DATA PREPARATION: 

CNNs and Transformers (Attention Network)

(5 x 5) mm2

Roberto Moretti et al. , https://agenda.ciemat.es/event/4042/

Picture from: https://www.mdpi.com/2076-3417/11/6/2455/htm#
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Supervised class data

https://www.mdpi.com/2076-3417/11/6/2455/htm


QML Challenge: achieving a good β vs ββ 
separation 

Double beta decay search at DUNE

• Comprehensive study on QSVM performance
• Kernels
• Input features
• Circuit depth

• Kernel design via genetic optimisation
• Binary representation of the feature map circuit
• Test on IBM Lagos

(5 x 5) mm2

Roberto Moretti et al. , https://agenda.ciemat.es/event/4042/
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Some results
Roberto Moretti et al. , https://agenda.ciemat.es/event/4042/

Run on IBM Lagos

ZZ feature map

ATN features

CNN features

CNN features
GA optimised kernel

ATN features
GA optimised kernel

• QSVM is as good as classical

• Increasing number of qubits does not improve accuracy at convergence: can lead to overfitting

• Results seems driven by the feature map performance

Need higher
spatial resolution

resolution !

(5 x 5) mm2

(1 x 1) mm2
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A priori methodology to assess 
Quantum Advantage (QA)

From complexity-theoretical argument it 
can be proved a rigorous prediction
error upper bound which defines the 
metrics defined in [1], implemented in [2]

Geometric Difference – gCQ (λ)

Approximate Dimension – d

Model Complexity – sK, λ (Ν)

Constraints:
• Encoding (feature) map of classical and     

quantum kernels
• Data structure - complex distribution function, 

dimensionality of the input space…
• Optimization of relevant parameters λ, γ

geometry test

gCQ ∝ √NgCQ << √N

dimensionality
test

complexity test

d << N else elsesQ << N
sC ≈ N

sC << N

Classical Classical
Quantum Classical Potential

QA
Classical
Quantum 

[1] HY. Huang et al, Nature Communication 12, 2631 (2021)
[2] F.Di Marcantonio et all., QuASK -- arXiv:2206.15284
https://quask.readthedocs.io/en/latest/#
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Supervised c data

https://quask.readthedocs.io/en/latest/


Interpretation in HEP
Φ(x)

Higgs space
Quantum 

Higgs space

• From general observation:

Ø High number of qubits

Ø d ≈ N 

High expressivity: 
data lost in the Hilbert space
Low generalization power 

• HEP observation:

Ø Quantum kernels have moderate gQC Worse performance than the classical counterpart, no QA

EXAMPLE: QSVM for the tt àH à(bb) event classification [2,3]

[2] V. Belis et al, EPJ Web Conf 251, 03070 (2021)
[3] F.Di Marcantonio et al., in preparation
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Quantum machine learning for quantum data

Huang, et al., Science 376, 6598 (2022) 

1. Work directly with quantum states.

2. Bypass any classical processing.

Task: Drawing phase diagrams

Cong, et al., Nat. Phys. 15, 1273–1278 (2019)

1. Supervised classification using a 
convolutional QNN using the 
groundstates as input data. 

2. Advantageous since quantum states are 
exponentially hard to save classically. 

3. Bottleneck: we need access to classical 
training labels!  Interpolation does not 
work
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Supervised quantum data



QML for OO Generalization 
§ Train in easy (integrable) subregions 

§ Generalize to a full model1

• Model: Axial Next Nearest Neighbor 

Ising (ANNNI) Hamiltonian:

Which is integrable for 𝜅 = 0 or ℎ = 0.
Binary Cross-entropy

Variational quantum data 

Monaco, Kiss, Mandarino, Vallecorsa, Grossi, arXiv: 2208.08748 (2022) 

Monte Carlo,
DMRG

Senk, Physics Reports, 170, 4 (1988)
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Results Learn a similarity function between the data.
Kottman, et al., Phys. Rev. Research 3, 043184 (2021)

1. Out of Distribution 
Generalization [M..Caro et al., Out-
of-distribution generalization for learning 
quantum dynamics, 

https://arxiv.org/abs/2204.10268]

2. Performance increases with 
the system’s size. 

3. Adresses the bottlneck of 
needing expensive training 
labels. 

4. QCNN gives quantitative 
predictions
[Banchi et all., Generalization in Quantum 
Machine Learning: A Quantum Information 
Standpoint, PRX QUANTUM 2, 040321 (2021) ]

ConclusionsAutoencoder(95%)

Monaco, Kiss, Mandarino, Vallecorsa, Grossi, arXiv: 2208.08748 (2022) 
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Characterize Quantum Advantage
• Classical machine learning models can often compete or outperform existing 

quantum models even on data sets generated by quantum evolution

• Large quantum Hilbert space in existing quantum models can result in 
significantly inferior prediction performance compared to classical machines: 
expressivity of QML hinder generalization

• We need a methodology for assessing the potential for quantum advantage in 
prediction on learning tasks

• Are there alternative research questions beyond the goal of beating classical
machine learning?
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Training 

dim
ension

Features 

dimension

Hyperparameter

Metrics

Exclusion Region for QML in HEP?
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• Classical intractability: what useful problems 

can we solve on a quantum computer that we 

cannot on a classical computer? 

• Innovation: what new algorithms can we come 

up with?

• Computational complexity: how can we obtain 

certain speedups? 

• Where QML is the right solution to our problem? 



THANK YOU
michele.grossi@cern.ch
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