
Holographic Realization of  the
Prime Number Quantum Potential 

Giuseppe Mussardo
SISSA-INFN Trieste

Work in collaboration with
Donatella Cassettari 
Andrea Trombettoni



Topics of  the seminar

• Number Theory and Physics

• Quantum Abacus

• Prime numbers

• Experimental realization of  the quantum
potential for the primes

• New perspectives



There has been increasing interest for the profound and engaging 
links recently discovered between Number Theory and Physics 
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Natural questions

• Given an arithmetic sequence {Sn }, does a quantum system
which has this sequence as a spectrum exist? 

• Is the Hamiltonian of such a system unique?



Quantum Abacus



Quantum Abacus

We would like to realise quantum systems with energy levels
related in a controllable way to arithmetic sequences

This would allow us to approach in the most efficient way 
problems of  highest complexity, such as 

• Primality test

• Factorization

• Several open conjectures, … 



Today our attention is focused on quantum abacus based on 
a one-dimensional Hamiltonian of  the form
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Fibonacci numbers

}{ nF =1, 1, 2, 3, 5, 8, 13, 21, 34, 55,…
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Fn+2 = Fn+1 + Fn



• Unfortunately, it does not exist a quantum system 
which has the Fibonacci numbers as spectrum…

• The reason is that their sequence grows too fast

• Similarly, it does not exist a quantum Schroedinger 
Hamiltonian with a spectrum given, for instance, by 
the Mersenne numbers or the perfect numbers 
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Bound on the growth of  eigenvalues

• For a one-dimensional Hamiltonian of  the form
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H =
p
2

2m
+ V (x)

the sequence of  energy eigenvalues must satisfy
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Eratosthenes sieve



• On a large scale, primes have extremely smooth distribution

• On a small scale, however, primes have highly unpredictable 
and irregular behavior

Example: Gap between the primes
1. Many (infinite?) twins of primes

(11,13) (17,19) (41,43) (347,349)… …

2.  Arbitrarily large interval without a single prime!!

(1012 + 1)! + n n = 1, 2, 3, . . . 1012 + 1,

<latexit sha1_base64="4rkHU4O/Qb1MsW4Y54EGY8nJ94M=">AAACC3icdVDLSgMxFM34rOOr6tJNaBEEYciU6lhwUXTjsoJ9QKeUTJq2oZnMmGSEMnTvxl9x40IRt/6AO//GTFtBRQ8Ezj3nXm7uCWLOlEbow1pYXFpeWc2t2esbm1vb+Z3dhooSSWidRDySrQArypmgdc00p61YUhwGnDaD0UXmN2+pVCwS13oc006IB4L1GcHaSN18QUCf0xsYdxU8gyVT+XbcTcWRO8lqo5umInLckuchBJFTqVQ873hGUNmDroOmKII5at38u9+LSBJSoQnHSrVdFOtOiqVmhNOJ7SeKxpiM8IC2DRU4pKqTTm+ZwAOj9GA/kuYJDafq94kUh0qNw8B0hlgP1W8vE//y2onun3ZSJuJEU0Fmi/oJhzqCWTCwxyQlmo8NwUQy81dIhlhiok18tgnh61L4P2mUHPfEKV+Vi9XzeRw5sA8K4BC4wANVcAlqoA4IuAMP4Ak8W/fWo/Vivc5aF6z5zB74AevtExZcmJU=</latexit>

n  ps < 2n

pn+1 < 2pn

Dr. Jekyll and Mr. Hyde



It does not exist a close formula for the n-th prime number

However their scaling law is captured by 
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pn ' n log n

Hence, there must exist a quantum Hamiltonian that has 
the primes as eigenvalues!  



Counting the Primes 

⇡(x) : gives the number of primes less or equal to x
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Counting the Primes 

⇡(x) : gives the number of primes less or equal to x
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Prime Number Theorem: Gauss
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A simple proof
• assuming no correlation between numbers, 1/p is the probability that a number x     
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The Riemann zeta Function
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The Riemann zeta Function
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� log ⇣(s) = s

Z 1

1

⇡(x)

x(xs � 1)
dx

Connection between the primes and the Riemann  ζ(s) function



Connection between the primes and the Riemann  ζ(s) function

µ(n) =

8
<
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Connection between the primes and the Riemann  ζ(s) function
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Prime Number Theorem: Riemann
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“The music of the primes”



• The Riemann function has to do with the counting of the primes

• If the Riemann hypothesis is true, we have a clear estimate 
of the error

|⇡(x)� Li(x)| < 1

8⇡

p
x log x

Summary

• The scaling law of the prime numbers is 
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pn ' n log n
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Inverse problems

how to find the quantum potential V(x) ?

Given an admissible sequence of number nS ,

• Semi-classical method

• Dressing method (solitonic equations)



Primality test

E = ~!N



Factorization
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N = p1 ⇥ p2 ⇥ . . .⇥ pk

The quantum abacus allows to crack the problem with the 
MINIMUM number of  operations, k, i.e. the number of  terms!



Semi-classical potential
GM, (1995)
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For prime numbers…
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Holographic Realization of the Prime Number

Quantum Potential
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We report the experimental realization of the prime number quantum
potential VN (x), defined as the potential entering the single-particle
Schrödinger Hamiltonian with eigenvalues given by the first N prime
numbers. Using computer-generated holography, we create light
intensity profiles suitable to optically trap ultracold atoms in these
potentials for different N values. As a further application, we also
implement a potential whose spectrum is given by the lucky num-
bers, a sequence of integers generated by a different sieve than the
familiar Eratosthenes’s sieve used for the primes. Our results pave
the way towards the realization of quantum potentials with arbitrary
sequences of integers as energy levels and show, in perspective, the
possibility to set up quantum systems for arithmetic manipulations
or mathematical tests involving prime numbers.
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1. Introduction1

Mathematics is a golden mine of surprises, starting from its2

very basic branch: arithmetics. Consider as major examples3

the sets of the natural numbers4

N = {1, 2, 3, 4, 5, . . .} [1]5

and of the prime numbers6

P = {2, 3, 5, 7, 11, . . .}. [2]7

While the pattern of natural numbers is obvious, since no8

matter which one you pick, it is straightforward to determine9

what the next one is, the answer is instead highly non-trivial10

for the set of prime numbers, whose intriguing and sometimes11

apparently erratic properties never ceased to intrigue mathe-12

maticians, physicists, scientists, and curious people in general13

(1–9).14

The sequences of integers and prime numbers are mathe-15

matical objects: one could say that they are the mathematical16

objects par excellence, being at the roots of arithmetics and17

therefore at the roots of entire mathematics. However, a useful18

point of view - particularly relevant for computational pur-19

poses – is to see them as quantities which emerge from physical20

operations performed in the physical world. The rationale is21

to have a physical system, an abacus, on which one performs22

the desired operations acting on the elements of certain de-23

sired sequences of integers. Since ultimately all aspects of the24

world around us can be explained using quantum mechanics,25

we would like to have a quantum abacus and it is natural to26

employ a Hamiltonian whose eigenvalues are the elements of27

the desired quantum abacus.28

Adopting this point of view, discrete sequences of numbers29

may be seen as spectra of some quantum Hamiltonians. In this30

paper we focus on the one-dimensional quantum Hamiltonian31

of a single particle of mass m, expressed in the standard form 32

as 33

Ĥ = p
2

2m
+ V (x) , [3] 34

where p is the momentum operator and V (x) is taken to be 35

a continuous function in a given interval J (which can be 36

the entire real axis). If a potential VN (x) is such that the 37

eigenvalues En of the time-independent Schrödinger equation 38

ĤÂn =
3

≠ ~2

2m

d
2

dx2 + VN (x)
4

Ân = EnÂn [4] 39

are the first N prime numbers, we call VN (x) a N prime 40

number quantum potential. In saying that the eigenvalues 41

of Eq. (4) are the prime numbers, or any other sequence 42

of integers, we are actually referring to the eigenvalues en 43

of Ĥ defined in dimensionless units: in physical units, the 44

eigenvalues En are equal to their dimensionless counterpart 45

en multiplied by a constant having the dimension of an energy, 46

which depends on ~, m, and a length characteristic of the 47

potential VN (x) itself. To fix the notation, hereafter the 48

ground state in Eq. (4) corresponds to n = 0 (and therefore, 49

in the case of the primes, e0 = 2). For completeness, let’s 50

point out that in addition to the discrete part of the spectrum 51

featuring the desired first N primes, the potential VN (x) will 52

also have a continuous spectrum for energies larger than the 53

highest prime pN . 54

The experimental realization of VN (x) will provide the first 55

ingredient for the implementation of a quantum abacus, in 56

which arithmetic operations can be translated into physical 57
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SUSY Quantum Mechanics

V1(x) ! V2(x) ! V3(x) ! · · ·
E = {E1, E2, E3, . . . , En}



SUSY Potentials: top-down method

✏0

✏1

✏n = 0

f 0
m(x)� f2

m(x) + Vm(x) = ✏m

Vm�1(x) = 2✏m + 2f2
m � Vm(x)



Potential with the first 40 levels of the harmonic oscillator



Holographic Quantum Potential with the first primes
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Generalization to arbitrary sequences

• Sequence of  the logaritms of  the primes or natural numbers

(this permits to address the factorization of  integers, with 
analogical algorithm alternative to the Shor algorithm) 

• Sequence of  the lucky numbers
<latexit sha1_base64="1iXh1ZbUP+Q/JTG05zGOqcwg/BI="></latexit>

{Ln} = 1, 3, 7, 9, 13, 15, 21, 31, 33, · · ·

(this permits to address genuine questions in Number Theory 
such as the existence of  Riemann Hypothesis for other classes) 



DRAFT

Fig. 5. (a) Experimental lucky number potential V (L)
10 (x), where the red scale bar

is 50 µm. The corresponding eigenvalues are tabulated in (b) alongside the first 15
lucky numbers.

Fig. 6. (a) The G-apparatus filters numbers that are both lucky and prime numbers.
The devices A and B are made of the potentials V (L)

M (x) and VN (x) for the M
lucky numbers and N prime numbers respectively, with an energy cutoff ‘0. (b)
The transmission amplitude T (E) versus the (dimensionless) energy E from the
G-apparatus, with sharp resonance peaks in correspondence of those values of E
that are both lucky and prime numbers.

as the sieve of Josephus Flavius) di�erent from the sieve of504

Eratosthenes used for the primes. Briefly, to obtain the prime505

numbers one notoriously eliminates from the list of integers506

the multiples of 2 (the even numbers), then the multiples of507

3, then the multiples of 5, and so on. On the contrary, for508

the lucky numbers one eliminates numbers based on their509

position in the remaining set, instead of their original value,510

i.e. their position in the initial set of natural numbers. So,511

one eliminates every second number (again the even numbers),512

then, rescaling the remaining set, every third number, then513

every fourth number, and so on. As for the primes, there are514

infinitely many lucky numbers. Moreover, the prime and the515

lucky numbers share many properties, including the asymptotic516

behaviour according to the prime number theorem. A "lucky517

prime" is a lucky number that is also a prime, and it has been518

conjectured that there are infinitely many lucky primes.519

Proceeding as in Sections 4 and 5, in Figure 5 we present,520

as an example, the experimental holographic realization of the521

potential V
(L)

10 (x) for the first 10 lucky numbers. Notice that,522

using the transmission and reflection properties of a quantum523

potential, it is possible to set up a simple physical experiment,524

shown in Figure 6, to test whether a given number w is both525

a lucky and a prime number. It involves a generalization of526

the proposal originally made in (16) for checking the primality 527

of a number: in the present case, let’s imagine that in the box 528

A we have realized the lucky potential V
(L)

M with a number of 529

levels M large enough so that LM ∫ w, while in the box B we 530

have instead realized the prime number potential VN (x) with 531

pN ∫ w. Both potentials can be rounded and truncated at an 532

energy cuto� ‘0 (which can be controlled by an external handle) 533

in such a way that the original energy levels are essentially left 534

unperturbed but there are now asymptotic free states. Hence, 535

we can take advantage of the typical resonance phenomena of 536

quantum mechanics. We send on the composite apparatus G, 537

made of A and B, a wave-packet from the left (x æ ≠Œ) with 538

dimensionless energy w. If the number w is a lucky number, it 539

will be completely transmitted through box A, and if it is also 540

a prime number, it will be completely transmitted through box 541

B as well. Therefore, if the particle with energy w is observed 542

coming out the apparatus G, then the number w is both a 543

lucky and a prime number. This way one could implement a 544

experimental setup to test whether or not any given number 545

w is a lucky prime. 546

7. Conclusions 547

In this paper we have provided the first experimental realiza- 548

tion of the prime number quantum potential VN (x), whose 549

single-particle quantum Hamiltonian has the lowest N prime 550

numbers as eigenvalues. The exact theoretical shape of such 551

a potential has been determined using supersymmetric quan- 552

tum mechanics and experimentally implemented by means 553

of holographic techniques. As a proof of principle, we have 554

experimentally realized the potential VN (x) with N = 10 555

and N = 15, finding a good agreement of the eigenvalues of 556

these potentials with the first 15 prime numbers. We have 557

also discussed how this procedure can be successfully used to 558

implement potentials having other sequences of integers as 559

eigenvalues: this is the case of the “lucky” potential V
(L)

N (x), 560

e.g. the potential which has the first N = 10 lucky numbers 561

as eigenvalues. It goes without saying that in order to in- 562

crease the capability of the present device, so as to have longer 563

sequences as energy levels, of course one needs to increase 564

its resolution, as is the case for any physical system which 565

stores and manipulates numbers. In particular, for us this 566

means increasing the number of SLM pixels used to sample 567

the potential. 568

The present results provide a physical setup for a quantum 569

mechanical manipulations of discrete sequences of numbers. 570

This paves the way towards using these potentials for a variety 571

of mathematical tests (such as the primality test) and arith- 572

metic manipulations (such as prime factorization) by means 573

of quantum experiments. It will be interesting to populate the 574

energy levels with neutral atoms (bosonic or fermionic) and to 575

induce transitions between levels by “shaking” the potential, 576

either in terms of varying its overall strength or its center of 577

mass, using a periodic drive. A compelling aspect is to deter- 578

mine whether it is better to employ for such manipulations 579

either fermionic or bosonic atoms. Preliminary results seem to 580

favour the latter, in absence of sizable atomic interactions, and 581

further work is currently in progress. Equally interesting is to 582

address other important open problems related to temperature 583

e�ects and to the role played by atomic interactions, in view of 584

the e�cient implementation of any given arithmetic operation 585

one wishes to implement on integers. 586
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