Holographic Realization of the Prime Number Quantum Potential

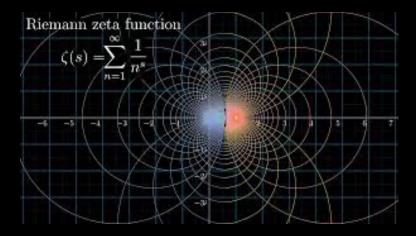
> Giuseppe Mussardo SISSA-INFN Trieste

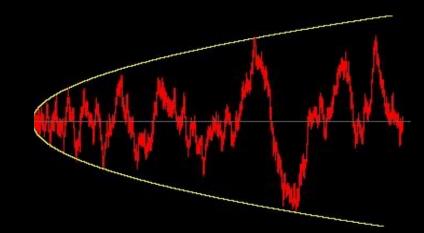
Work in collaboration with Donatella Cassettari Andrea Trombettoni

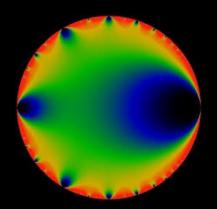
Topics of the seminar

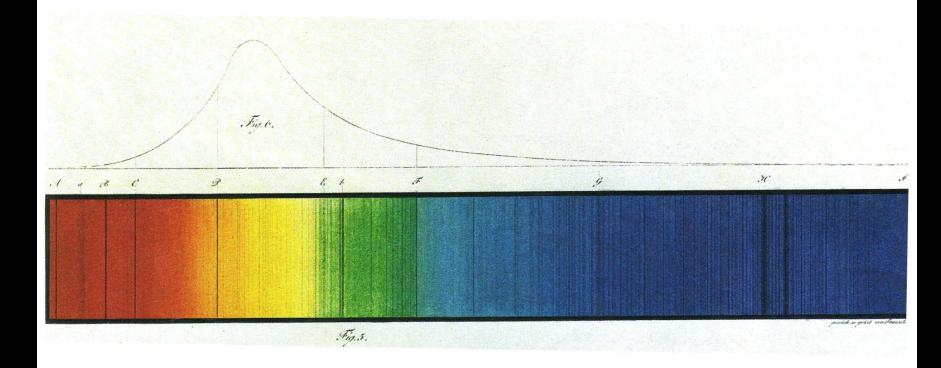
- Number Theory and Physics
- Quantum Abacus
- Prime numbers
- Experimental realization of the quantum potential for the primes
- New perspectives

There has been increasing interest for the profound and engaging links recently discovered between Number Theory and Physics









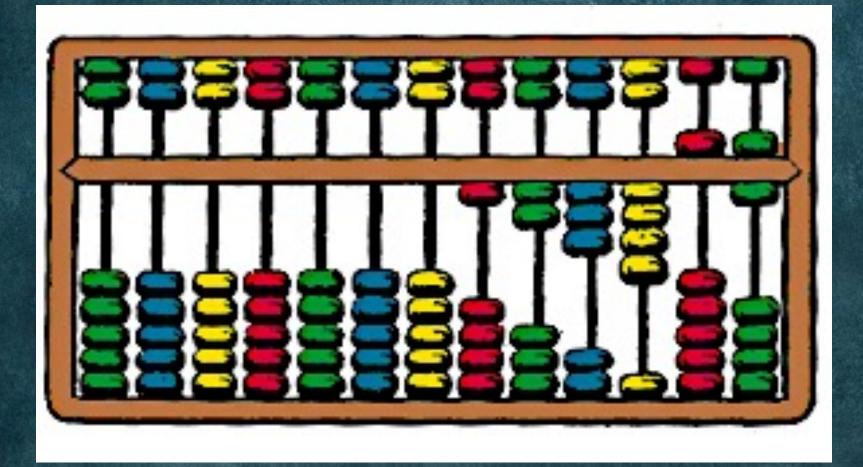
$$v_{n,m} = E_n - E_m$$

Natural questions

 Given an arithmetic sequence {S_n}, does a quantum system which has this sequence as a spectrum exist?

Is the Hamiltonian of such a system unique?

Quantum Abacus

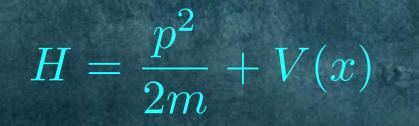


We would like to <u>realise</u> quantum systems with energy levels related in a controllable way to arithmetic sequences

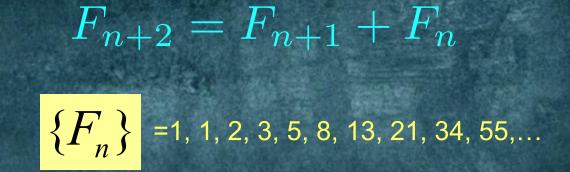
This would allow us to approach in the most efficient way problems of highest complexity, such as

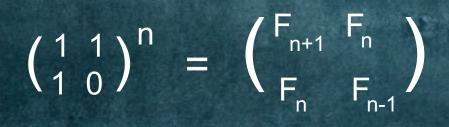
- Primality test
- Factorization
- Several open conjectures, ...

Today our attention is focused on quantum abacus based on a one-dimensional Hamiltonian of the form



Fibonacci numbers





$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

• Unfortunately, it does not exist a quantum system which has the Fibonacci numbers as spectrum...

• The reason is that their sequence grows too fast

• Similarly, it does not exist a quantum Schroedinger Hamiltonian with a spectrum given, for instance, by the Mersenne numbers or the perfect numbers

$$M_n = 2^n - 1$$
$$P_n = 2^{n-1} M_n$$

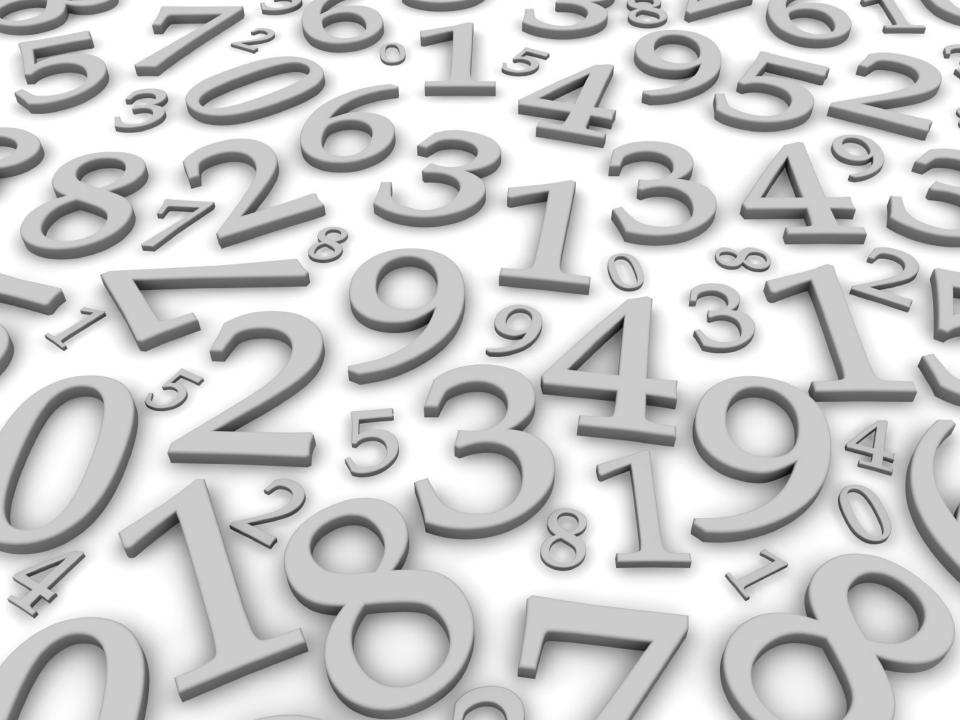
Bound on the growth of eigenvalues

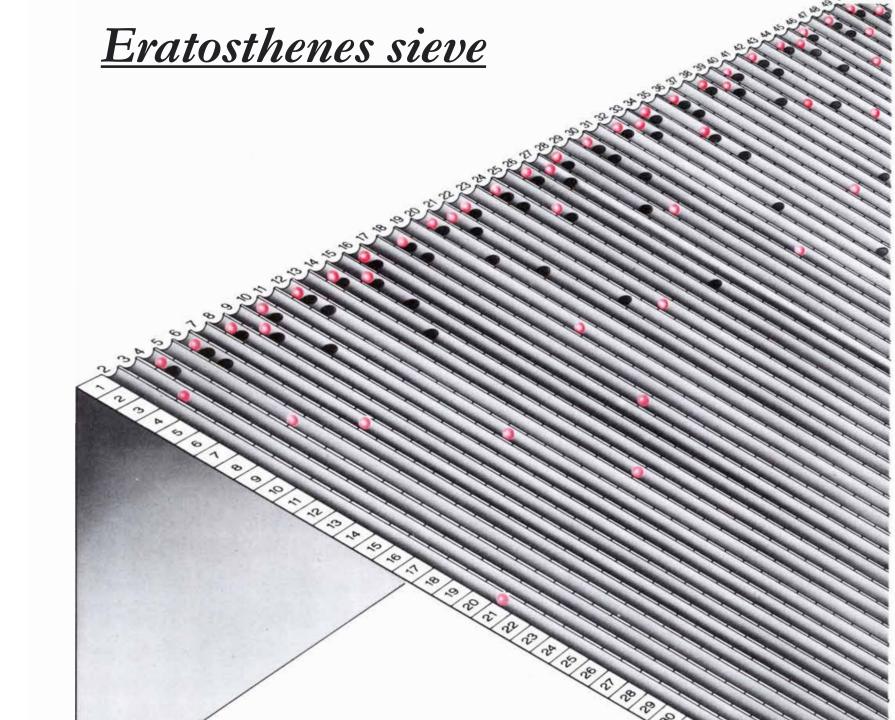
• For a one-dimensional Hamiltonian of the form



the sequence of energy eigenvalues must satisfy

 $E_n \leq n^2$





Dr. Jekyll and Mr. Hyde

On a large scale, primes have extremely smooth distribution

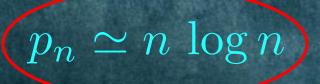
On a small scale, however, primes have highly unpredictable and irregular behavior p_{n+1} < 2p_n
Example: Gap between the primes
1. Many (infinite?) twins of primes
(11,13) (17,19) (41,43) (347,349) ...

2. Arbitrarily large interval without a single prime!!

 $(10^{12} + 1)! + n$, $n = 1, 2, 3, \dots 10^{12} + 1$

It does not exist a close formula for the n-th prime number

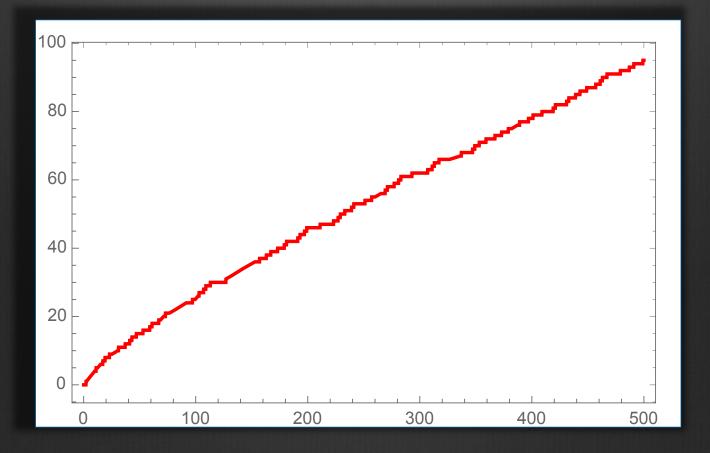
However their scaling law is captured by



Hence, there must exist a quantum Hamiltonian that has the primes as eigenvalues!

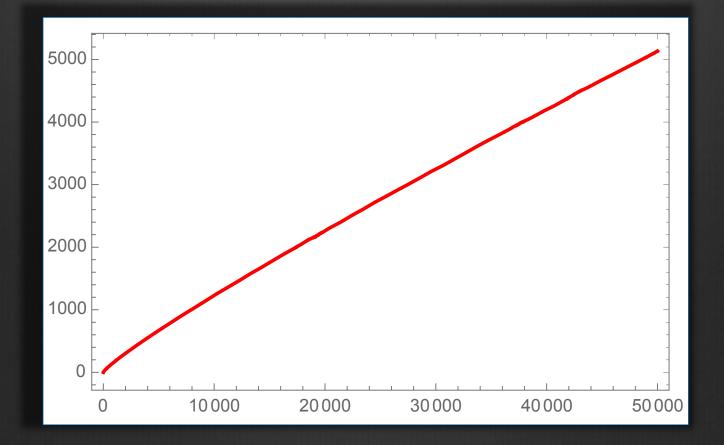
Counting the Primes

 $\pi(x)$: gives the number of primes less or equal to x

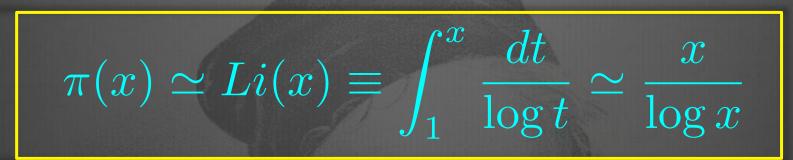


Counting the Primes

 $\pi(x)$: gives the number of primes less or equal to x



<u>Prime Number Theorem: Gauss</u>



A simple proof

 assuming no correlation between numbers, 1/p is the probability that a number x is divisible by the prime p

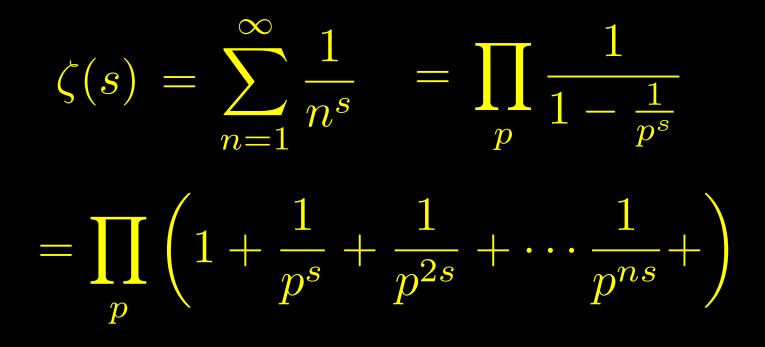
•
$$W(x) \simeq \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) \dots = \prod_{p < x} \left(1 - \frac{1}{p}\right)$$

• $\log W(x) \simeq \sum_{p < x} \log \left(1 - \frac{1}{p}\right) \simeq -\sum_p \frac{1}{p} \simeq -\int_1^x dn \frac{W(n)}{n}$

$$\frac{W'(x)}{W(x)} = \frac{W(x)}{x}$$

x	$\pi(x) = \#\{\text{primes } \leq x\}$	Overcount: $\operatorname{Li}(x) - \pi(x)$
10 ⁸	5761455	753
10 ⁹	50847534	1700
10 ¹⁰	455052511	3103
10 ¹¹	4118054813	11587
1012	37607912018	38262
10 ¹³	346065536839	108970
1014	3204941750802	314889
1015	29844570422669	1052618
10 ¹⁶	279238341033925	3214631
1017	2623557157654233	7956588
1018	24739954287740860	21949554
10 ¹⁹	234057667276344607	99877774
1020	2220819602560918840	222744643
10 ²¹	21127269486018731928	597394253
1022	201467286689315906290	1932355207

The Riemann zeta Function



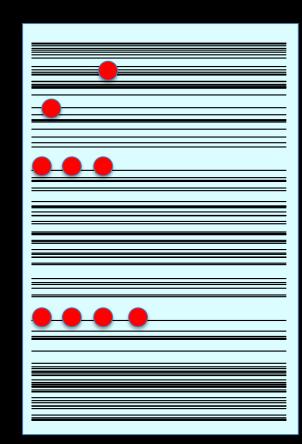
 $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$

The Riemann zeta Function

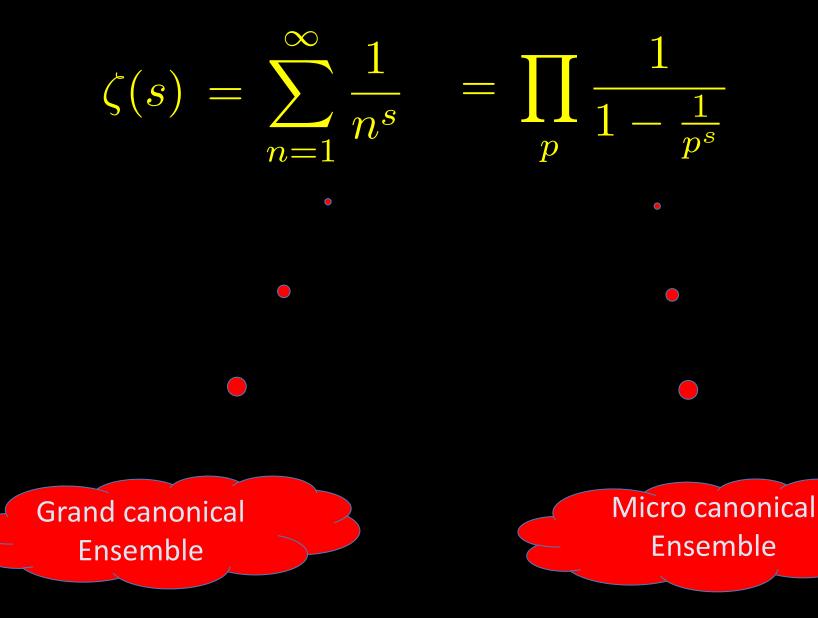
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}$$

Free bosonic system

 $E_p = \log p$



The Riemann zeta Function



Connection between the primes and the Riemann $\zeta(s)$ function

$$\log \zeta(s) = s \int_{1}^{\infty} \frac{\pi(x)}{x(x^s - 1)} dx$$

Connection between the primes and the Riemann ζ(s) function

$$\pi(x) = J(x) - \frac{1}{2}J(x^{1/2}) - \frac{1}{3}J(x^{1/3}) - \frac{1}{5}J(x^{1/5}) + \frac{1}{6}J(x^{1/6}) + \cdots$$
$$= \sum_{n=1}^{\infty} \frac{\mu(n)}{n}J(x^{1/n})$$

$$\mu(n) = \begin{cases} 1 & \text{if n is squarefree with an even number of prime factors} \\ -1 & \text{if n is squarefree with an odd number of prime factors} \\ 0 & \text{if n has a squared prime factor} \end{cases}$$

Connection between the primes and the Riemann ζ(s) function

$$\pi(x) = J(x) - \frac{1}{2}J(x^{1/2}) - \frac{1}{3}J(x^{1/3}) - \frac{1}{5}J(x^{1/5}) + \frac{1}{6}J(x^{1/6}) + \cdots$$
$$= \sum_{n=1}^{\infty} \frac{\mu(n)}{n}J(x^{1/n})$$

$$J(x) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \log \zeta(s) \, x^s \, \frac{ds}{s}$$
$$= Li(x) - \sum_{\rho} Li(x^{\rho}) - \log 2 + \int_x^{\infty} \frac{dt}{t(t^2 - 1)\log t}$$

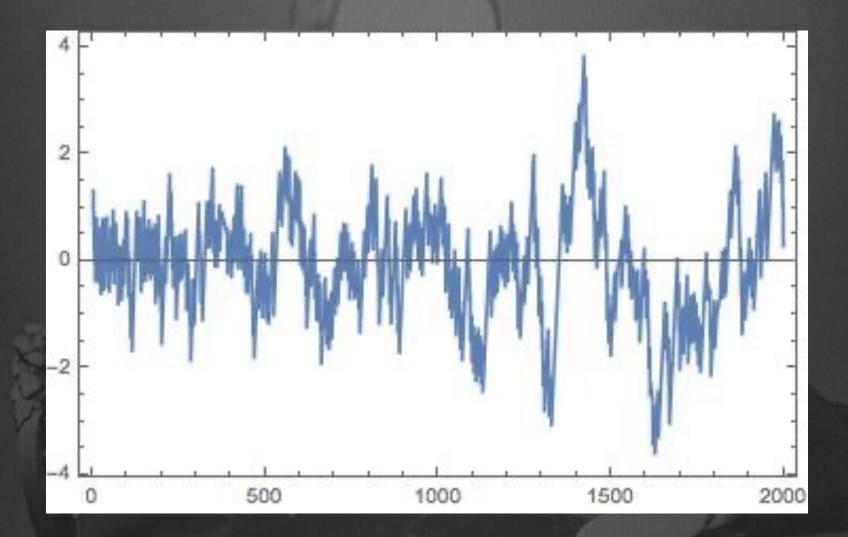
<u>Prime Number Theorem: Riemann</u>

$\pi(x) \simeq R(x)$

$R(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} Li(x^{1/n})$

x	$\#\{\text{primes } \leq x\}$	Gauss's overcount	Riemann's overcount
108	5761455	753	131
109	50847534	1700	-15
10 ¹⁰	455052511	3103	-1711
1011	4118054813	11587	-2097
1012	37607912018	38262	-1050
1013	346065536839	108970	-4944
1014	3204941750802	314889	-17569
10 ¹⁵	29844570422669	1052618	76456
1016	279238341033925	3214631	333527
1017	2623557157654233	7956588	-585236
1018	24739954287740860	21949554	-3475062
1019	234057667276344607	99877774	23937697
1020	2220819602560918840	222744643	-4783163
1021	21127269486018731928	597394253	-86210244
1022	201467286689315906290	1932355207	-126677992

"The music of the primes"



- The Riemann function has to do with the counting of the primes
- If the Riemann hypothesis is true, we have a clear estimate of the error

$$|\pi(x) - Li(x)| < \frac{1}{8\pi}\sqrt{x}\log x$$

• The scaling law of the prime numbers is

$$p_n \simeq n \log n + n (\log \log n - 1) + \cdots$$

Inverse problems

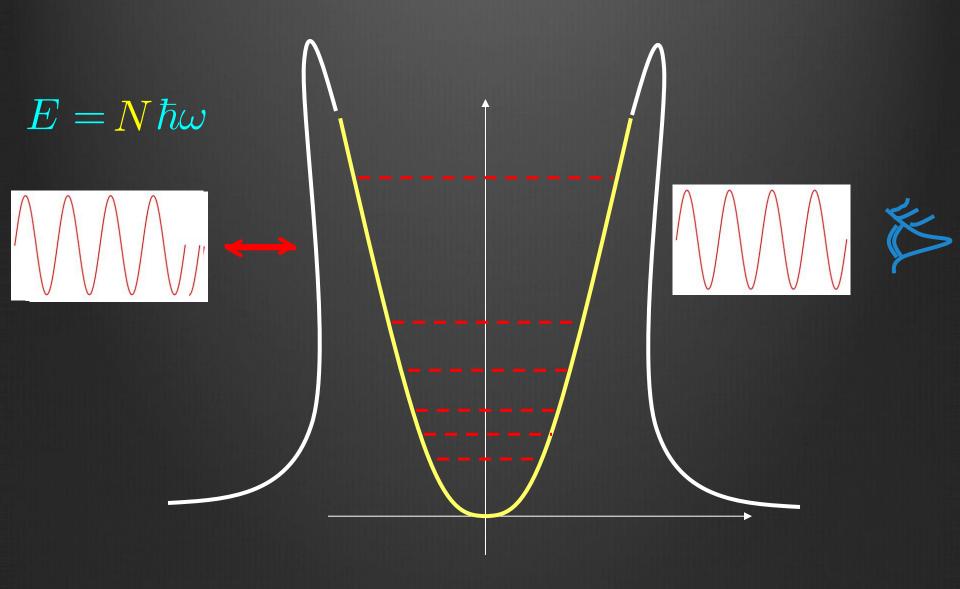
 S_n ,

Given an admissible sequence of number how to find the quantum potential V(x) ?

Semi-classical method

Dressing method (solitonic equations)

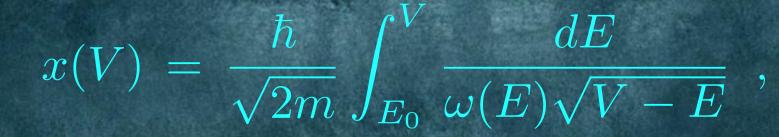
Primality test



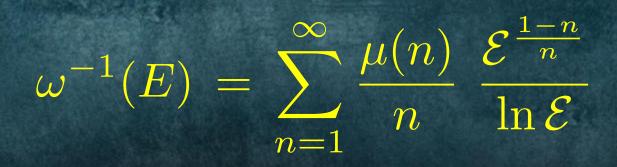
 $N = p_1 \times p_2 \times \ldots \times p_k$

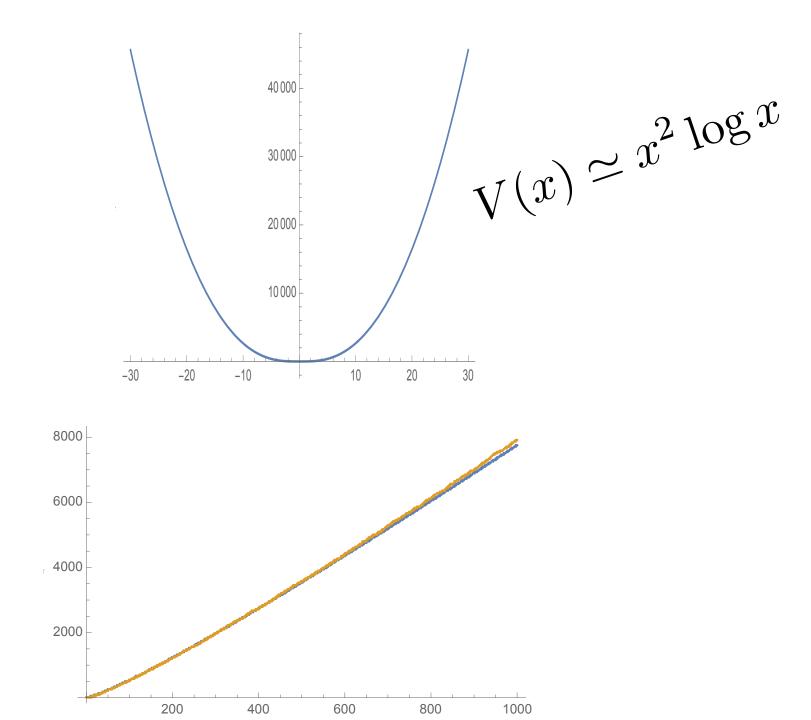
The quantum abacus allows to crack the problem with the **MINIMUM** number of operations, k, i.e. the number of terms!

<u>Semi-classical potential</u> GM, (1995)



For prime numbers...

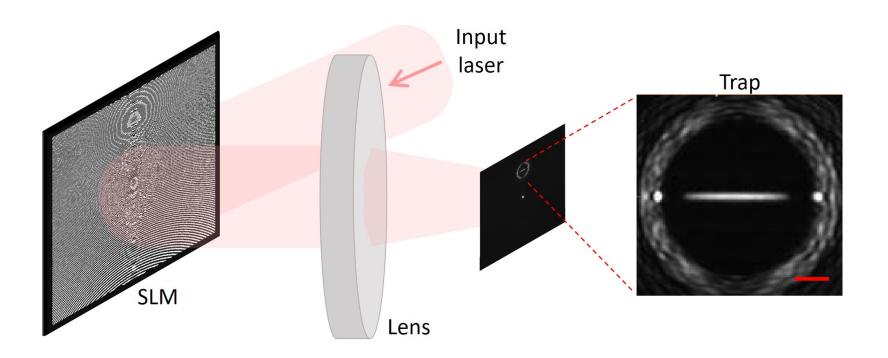




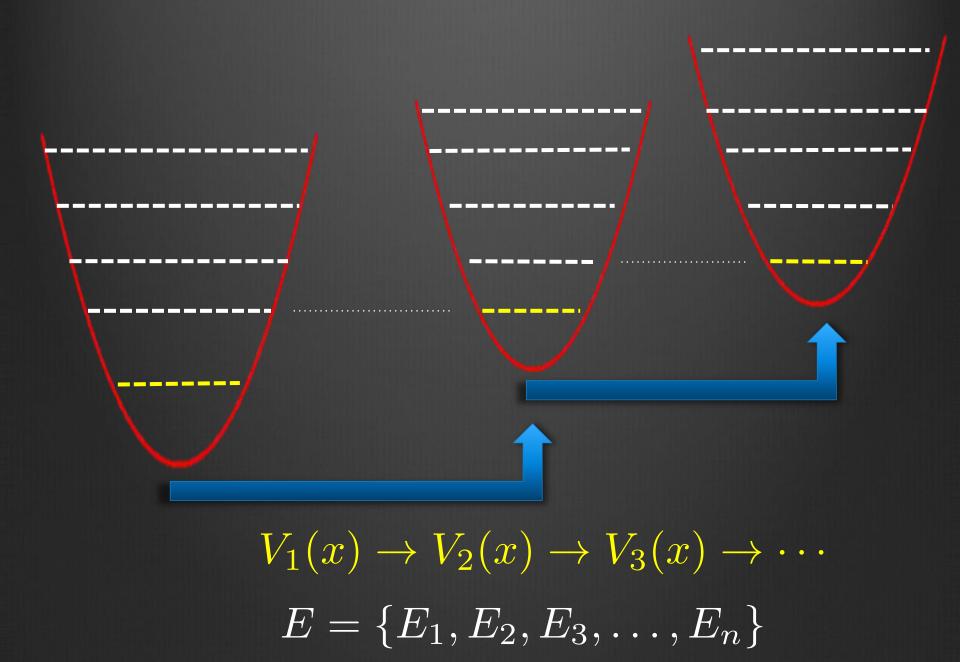
Holographic Realization of the Prime Number Quantum Potential

Donatella Cassettaria, Giuseppe Mussardo $^{\rm b},$ and Andrea Trombettoni $^{\rm c,b}$

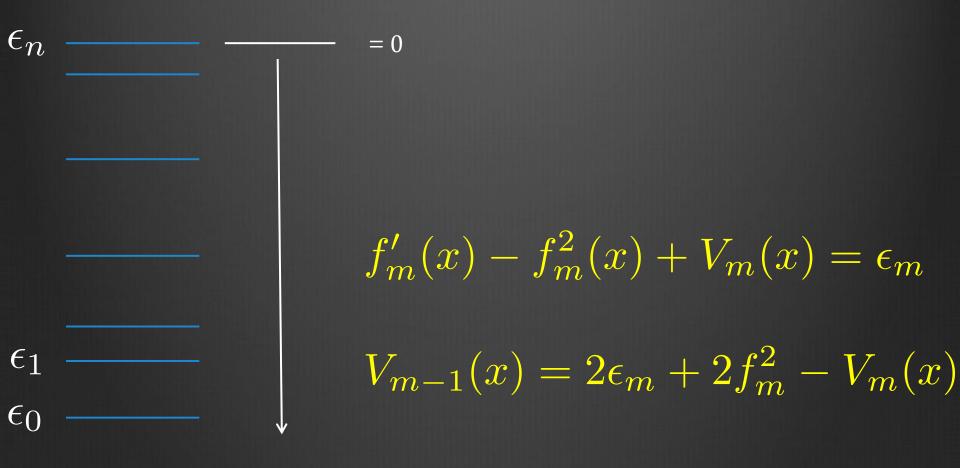
To appear in <u>PNAS Nexus</u>



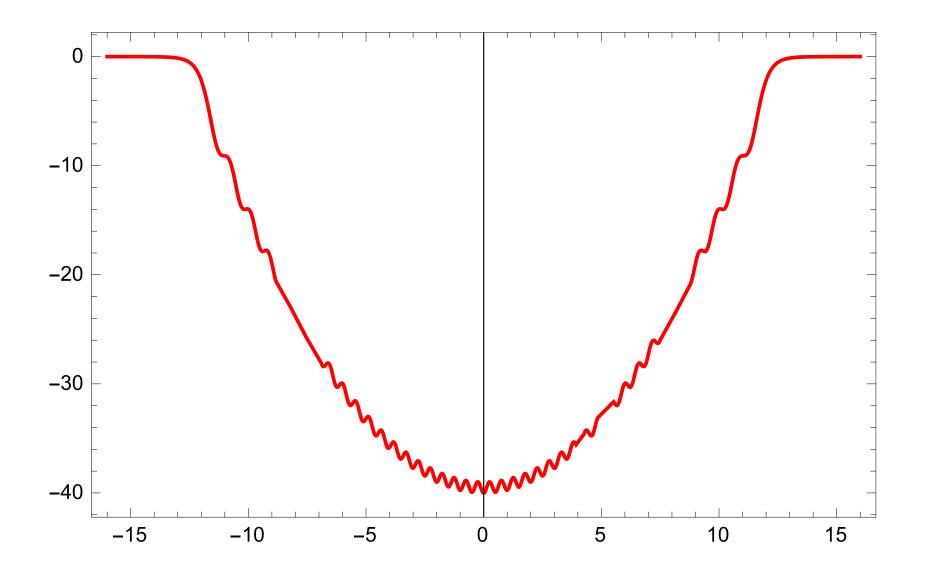
SUSY Quantum Mechanics



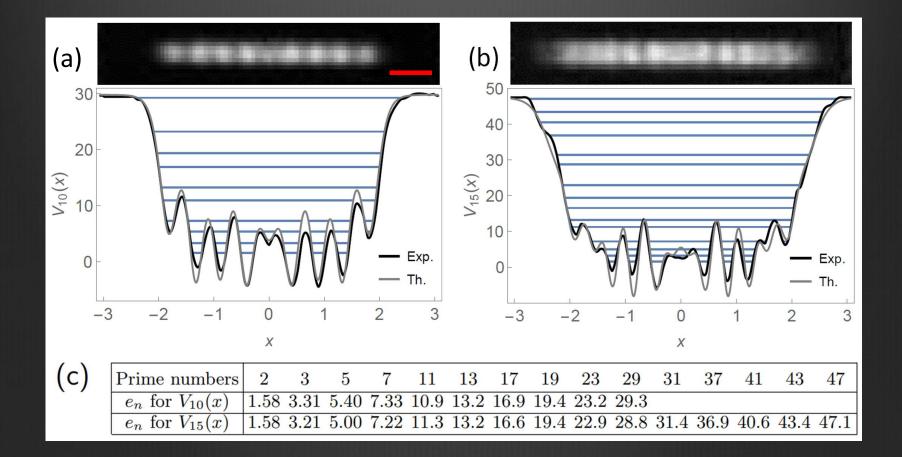
SUSY Potentials: top-down method



Potential with the first 40 levels of the harmonic oscillator



Holographic Quantum Potential with the first primes



Generalization to arbitrary sequences

• Sequence of the logaritms of the primes or natural numbers

(this permits to address the factorization of integers, with analogical algorithm alternative to the Shor algorithm)

• Sequence of the lucky numbers

 $\{L_n\} = 1, 3, 7, 9, 13, 15, 21, 31, 33, \cdots$

(this permits to address genuine questions in Number Theory such as the existence of Riemann Hypothesis for other classes)

