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Topics of the seminar

* Number Theory and Physics
* Quantum Abacus

e Prime numbers

* Experimental realization of the quantum
potential for the primes

* New perspectives



There has been increasing interest for the profound and engaging
links recently discovered between Number Theory and Physics
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Natural questions

« Given an arithmetic sequence {S, }, does a quantum system
which has this sequence as a spectrum exist?

 Is the Hamiltonian of such a system unique?






Quantum Abacus

We would like to realise quantum systems with energy levels
related in a controllable way to arithmetic sequences

This would allow us to approach in the most efficient way
problems of highest complexity, such as

* Primality test

e Factorization

* Several open conjectures, ...



Today our attention is focused on quantum abacus based on
a one-dimensional Hamiltonian of the form




Fibonacci numberts

JORY-1.1.23538 13,21, 34, 55,...




* Unfortunately, it does not exist a quantum system
which has the Fibonacci numbers as spectrum. ..

* The reason 1s that their sequence grows too fast

* Similarly, it does not exist a quantum Schroedinger
Hamiltonian with a spectrum given, for instance, by
the Mersenne numbers or the perfect numbers




Bound on the growth of eigenvalues

e For a one-dimensional Hamiltonian of the form
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Dr. Jekyll and Mrt. Hyde

® On a large scale, primes have extremely smooth distribution

e On a small scale, howdVer phimes-hdve highly unpredictable
and irregular behavior

Pn+1 < 2pn
Example: Gap between the primes

1. Many (infinite?) twins of primes
(11,13) (17,19) (41,43) = (347,349) ...

2. Arbitrarily large interval without a single prime!!

(O ™ =123 10T



It does not exist a close formula for the n-th prime number

However their scaling law is captured by

Dy, = T1OZ

Hence, there must exist a quantum Hamiltonian that has
the primes as eigenvalues!



Counting the Primes

77(;13) : gives the number of primes less or equal fo X




Counting the Primes

77(;13) : gives the number of primes less or equal fo X
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Prime Number Theorem: Gauss
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A simple proof

* assuming no correlation between numbers, 1/p is the probability that a number x

is divisible by the prime p
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m(x) = #{primes < x}

Overcount: Li(x) — m(x)
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The Riemann zeta Function
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The Riemann zeta Function

O

o =Y~ =Tl

n=1 D p°

Free bosonic system

E, = logp




The Riemann zeta Function

C(s) =D — _Hl—%
n=1 % p




Connection between the primes and the Riemann {(s) function




Connection between the primes and the Riemann {(s) function

m(x) = J(x) — —J( 1/2) lj(m1/3) _ éj(x1/5) 4 éj(xl/G) 4.,

J(.CEl/n)

||
M%
15

(1 if nissquarefree with an even number of prime factors
u(n) = ¢ —1 ifnissquarefeee with an odd number of prime factors
0 if nhasasquared prime factor

\



Connection between the primes and the Riemann {(s) function




Prime Number Theorem: Riemann
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“The music of the primes”
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sSummary

« The Riemann function has to do with the counting of the primes

« If the Riemann hypothesis is true, we have a clear estimate
of the error

(@) — Li(a)| < 8%@ log 2

* The scaling law of the prime numbers is

n = nlOgn—I—n(loglogn— 1) 4.



Inverse problems

Given an admissible sequence of number ,

how to find the quantum potential V(x) ?

« Semi-classical method

* Dressing method (solitonic equations)



Primality test
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Factorization

N =91 R Py X igaexX Dy,

The quantum abacus allows to crack the problem with the
MINIMUM number of operations, k, 1.e. the number of terms!




Semi-classical potential
GM, (1995)
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For prime numbers...
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SUSY Quantum Mechanics
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SUSY Potentials: top-down method




Potential with the first 40 levels of the harmonic oscillator




Holographic Quantum Potential with the first primes

X
Primenumbers) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

en for Vig(z) [1.58 3.31 5.40 7.33 10.9 13.2 16.9 19.4 23.2 29.3
en for Vis(z) |1.58 3.21 5.00 7.22 11.3 13.2 16.6 19.4 22.9 28.8 31.4 36.9 40.6 43.4 47.1




Generalization to arbitrary sequences

* Sequence of the logaritms of the primes or natural numbers

(this permits to address the factorization of integers, with
analogical algorithm alternative to the Shor algorithm)

* Sequence of the lucky numbers

{ Ly — BOREEREREE S 53, - - -

(this permits to address genuine questions in Number Theory
such as the existence of Riemann Hypothesis for other classes)
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