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▸ Something has to be quantum (e.g. data, or algorithm)


▸ Learning problem


▸ We need to use a machine, the problem is too 
complex for pen and paper calculations


▸ Data driven: we learn from examples*, defining a 
mathematical model is often impossible 


▸ Current Personal interests: theoretical guarantees 
(what kind of problems can be learnt easily? Why?)  

Q������ M������ L�������

CC CQ

QC QQ

classical quantum

cl
as
si
ca
l

qu
an
tu
m

Algorithm

Da
ta

� ��

OUTLINE OF QUANTUM MACHINE LEARNING



▸ Classical data is mapped onto a quantum 
state using a parametric quantum circuit, 
namely a composition of unitary gates that 
depend on classical variables.


▸ Once data are loaded into a quantum 
register, we apply a classification unitary 
￼ ,  with external parameters ￼  


▸ A measurement in the computational basis 
(probabilistically) determines the class 


▸ Parametric Quantum Circuits ￼             
Quantum Neural Networks 
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CQ: QUANTUM LEARNING OF CLASSICAL DATA IN NISQ DEVICES

Ûj(x) = exp (i x ⋅ Ĥj)



HOW DO WE OPTIMISE QUANTUM NEURAL NETWORKS? GRADIENTS!

▸ Parameter Shift Rule / Hadamard test for ￼  gates


‣ K Mitarai et al. - Physical Review A, 2018

‣ M Schuld et al. - Physical Review A, 2019


▸ Stochastic PSR for general Hamiltonian evolution  
￼ 


‣ L Banchi, GE Crooks, Quantum 5, 386 (2021)


▸ Continuous variable systems / GBS distribution


‣ N Killoran, et al.  Phys. Rev. Research (2019)

‣ L Banchi et al., Phys. Rev. A 102, 012417 (2020)
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QML WITH “QUANTUM DATA”
▸ For classical data we want to use a 

quantum computer, hoping to get a 
computational advantage 


▸ Example problems with quantum data: 
quantum sensing, quantum state and 
process tomography Q������ M������ L�������
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Figure 1. Learning quantum states, dynamics and measurements. (a) In this review, we divide the task of learning
quantum systems into the sub-tasks of learning quantum states (Sec. 2), quantum dynamics (Sec. 3), quantum measurements
(Sec. 5), and optimisation techniques (Sec. 6). (b) A list of widely-used methods for learning quantum states (top), dynamics
(centre), and measurements (bottom), indicating the number of qubits N each method has been applied to for experimental and
simulated data. The compared methods are (Maximum-likelihood49; MaxLik), (compressed sensing44; CS),
(permutationally-invariant QST276; PI-QST), (tensor-network QST55, 57; TN-QST), (restricted Boltzmann machines59, 63;
RBM), and (classical shadows71, 88; Shadow) for quantum states, (standard QPT110, 117, 122; SQPT), (randomised
benchmarking277; RB), (compressed sensing117, 120; CS), (tensor-network QPT122; TN-QPT), (quantum Hamiltonian
learning140, 142; QHL), (quantum model learning agent143; QMLA), (eigenstate-driven hamiltonian learning158; EdHL),
(Lindblad tomography167; LT), and (process tensor tomography176; PTT) for quantum dynamics, and (quantum detector
tomography229; QDT), (joint quantum-state and measurement tomography232, 233; JQSMT), and (gradient descend methods223;
GD) for quantum measurements.

References
1. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510, DOI:

10.1038/s41586-019-1666-5 (2019).
2. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463, DOI: 10.1126/science.

abe8770 (2020).
3. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232, DOI:

10.1038/s41586-021-03582-4 (2021).
4. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488, DOI: 10.1007/BF02650179 (1982).
5. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79, DOI: 10.22331/q-2018-08-06-79 (2018).
6. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185,

DOI: 10.1080/00107514.2014.964942 (2015).
7. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202, DOI: 10.1038/nature23474 (2017).
8. Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress.

Reports on Prog. Phys. 81, 074001, DOI: 10.1088/1361-6633/aab406 (2018).
9. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002, DOI: 10.1103/RevModPhys.

91.045002 (2019).
10. Marquardt, F. Machine Learning and Quantum Devices. SciPost Phys. Lect. Notes 29, DOI: 10.21468/

SciPostPhysLectNotes.29 (2021).
11. Dawid, A. et al. Modern applications of machine learning in quantum sciences. arXiv preprint arXiv:2204.04198 (2022).

15/30

▸ Our review on QC 


V Gebhart   […]   L Banchi   […] ,   arXiv:2207.00298       
Nature Reviews Physics (accepted)



▸Many-Body Entanglement Measurement from    
PPT-moments ￼ 


‣ J Gray, L Banchi, A Bayat, S Bose,                                       
Phys. Rev. Lett. 121, 150503 (2018)


▸ Quantum Phase Recognition


‣ I Cong, S Choi, MD Lukin,                                                   
Nature Physics 15, 1273 (2019)


‣ L Banchi, J Pereira, S Pirandola,                                              
PRX Quantum 2, 040321 (2021)
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FIG. 1: Schematics: (a) Example measurement set-up for the moments, µm = Tr
h
(⇢TB

AB)
m
i
, here for m = 3, from which one

can extract the logarithmic negativity E between A and B. The generic mixedness of ⇢AB could arise from entanglement with
environment C. Here the subsystems contain NA, NB and NC particles respectively. The scheme involves three copies of the
original system, and two counter propagating sets of measurements on A and B, ordered by the shown numbers, with direction
depicted by the filled arrows. (b) Diagrammatic proof (for m = 3) of the equivalence between the moments µm and expectation
of two opposite permutations (decomposed as swaps) on A and B – from which a measurement scheme can be derived.

glement between subsystems A and B. It is defined as:

E = log2

���⇢TA
AB

��� = log2

���⇢TB
AB

��� = log2
X

k

|�k| (1)

with | · | the trace norm, ⇢TX
AB

the partial transpose with
respect to subsystemX, and {�k} the eigenvalues of ⇢

TX
AB

.
Because of the non-trivial dependence of E on ⇢AB , there
is no state-independent observable that can measure it —
generally demanding full state tomography. The {�k} are
the roots of the characteristic polynomial, P (�)=det(��
⇢TB
AB

)=
P

n
cn�n, where each cn is a polynomial function

of the partially transposed moments:

µm = Tr
h
(⇢TB

AB
)m
i
=
X

k

�m

k
. (2)

In this way, full information about the spectrum {�k}

is contained in {µm}. It is known that these measuring
these moments is technically possible using m copies of
the state and controlled swap operations [49]. However,
even if these experimentally challenging operations were
available, the problem of extracting {�k} from the mo-
ments is notoriously ill-conditioned [57], with a closely
related problem being described as numerically catas-
trophic. Alongside this, an exponential number of mo-
ments respective to the size of AB are needed to exactly
solve the equations. On the other hand, to estimate the
logarithmic negativity, a precise knowledge of all �k is
not required. Since �

1
2  �k  1 for all k [58] andP

k
�k = 1, generically, the magnitude of the moments

quickly decreases with m, with the first few carrying the
most information. Backing up this intuition, we will show
that the moments required, {µm : m  M}, to accu-
rately estimate the entanglement can number as few as
M = 3. We do this by employing machine learning to
directly map moments to logarithmic negativity, avoiding
reconstruction of the spectrum or state. Note that µ0 is

simply the dimension of the systems Hilbert space, while
µ1 = 1 in all cases. Additionally, it can be easily shown
that µ2 is equal to the purity of the state = Tr

⇥
⇢2
AB

⇤
,

and as such, M � 3 is needed to extract any information
about E . In this sense our method is optimal in terms of
number of copies.
Measuring the Moments of ⇢TB

AB
. – The method for

measuring the moments proposed in [49] based on 3-body
controlled swaps is practically challenging in a many-
body set-up where natural interactions are two-body.
A simpler protocol, for 4 moments only, was provided
in [51]. Here, we show that any moment in Eq. (2)
can be measured using only SWAP-operators between
the individual constituents of the m copies of the state
⇢AB , namely ⇢⌦m

AB
=
N

m

c=1 ⇢AcBc . This general set-up is
shown in Fig. 1(a), where the mixedness of ⇢AB arises
from possible entanglement with a third system C, such
that ⇢AB = TrC | ABCi h ABC | with | ABCi being a
pure tripartite state. The first step is to write the ma-
trix power as an expectation of a permutation operator,
similar to Ref. [9, 59], but here on the partially trans-
posed copies:

µm = Tr

" 
mO

c=1

⇢
TBc
AcBc

!
Pm

#

= Tr

" 
mO

c=1

⇢AcBc

!
(Pm)TB

#
, (3)

where Pm is any linear combination of cyclic permutation
operators of order m and the second line makes use of the
identity Tr(⇢TB

AB
O)=Tr(⇢ABOTB ), valid for any operator

O. A schematic of the equality in Eq. (3) for m = 3 is
shown in Fig. 1(b). In the appendix [84] we provide a
choice of Pm with a neat operational meaning, both for
spin and bosonic systems. For spin lattices, our choice
of Pm to measure the moments µm results to the follow-
ing steps in practice: (i) prepare m copies of the state
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Sample complexity. The performance of a QPR solver can be quan-
tified by sample complexity11: what is the expected number of copies 
of the input state required to identify its quantum phase? We dem-
onstrate that the sample complexity of our exact QCNN circuit is 
substantially better than that of conventional methods. In principle, 
P
I
 can be detected by measuring a non-zero expectation value of 

string order parameters (SOPs)32,33 S
I

 such as

Sab ¼ ZaXaþ1Xaþ3 :::Xb#3Xb#1Zb ð3Þ

In practice, however, the expectation values of SOP vanish near the 
phase boundary due to diverging correlation length33; since quan-
tum projection noise is maximal in this vicinity, many experimental 
repetitions are required to affirm a non-zero expectation value. In 
contrast, the QCNN output is much sharper near the phase transi-
tion, so fewer repetitions are required.

Quantitatively, given some |ψin〉 and SOP S
I

, a projective measure-
ment of S can be modelled as a (generalized) Bernoulli random vari-
able, where the outcome is 1 with probability p = (〈ψin|S|ψin〉 + 1) / 2 
and −1 with probability 1 − p (since S2

I
 equals the identity operator); 

after M binary measurements, we estimate p. p > p0 = 0.5 signifies 
ψ inj i 2 P
I

. We define the sample complexity Mmin as the minimum 

M to test whether p > p0 with 95% confidence using an arcsine vari-
ance-stabilizing transformation34:

Mmin ¼
1:962

ðarcsin ffiffiffi
p

p #
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arcsinp0

p
Þ2

ð4Þ

Similarly, the sample complexity for a QCNN can be determined by 
replacing 〈ψin|S|ψin〉 by the QCNN output expectation value in the 
expression for p.

Figure 2d shows the sample complexity for the QCNN at various 
depths and SOPs of different lengths. The QCNN clearly requires 
substantially fewer input copies throughout the parameter regime, 
especially near criticality. More importantly, although the SOP sam-
ple complexity scales independently of string length, the QCNN 
sample complexity consistently improves with increasing depth and 
is limited only by finite size effects in our simulations. In particu-
lar, compared with SOPs, the QCNN reduces sample complexity by 
a factor that scales exponentially with the depth of the QCNN in 
numerically accessible regimes (inset). Such scaling arises from the 
iterative QEC performed at each depth and is not expected from 
any measurements of simple (potentially nonlocal) observables. We 
show in the Methods that our QCNN circuit measures a multiscale 
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Fig. 2 | Application to quantum phase recognition. a, The phase diagram of the Hamiltonian in the main text. The phase boundary points (blue and red 
diamonds) are extracted from infinite-size DMRG numerical simulations, while the background shading (colour scale) represents the output from the 
exact QCNN circuit for input size N!=!45 spins (see Methods). b, Exact QCNN circuit to recognize a Z2 ´Z2

I
 SPT phase. Blue line segments represent 

controlled-phase gates, blue three-qubit gates are Toffoli gates with the control qubits in the X basis, and orange two-qubit gates flip the target qubit’s 
phase when the X measurement yields −1. The fully connected layer applies controlled-phase gates followed by an Xi projection, effectively measuring 
Zi−1XiZi+1. c, Exact QCNN output along h1!=!0.5J for N!=!135 spins, depths d!=!1, …, 4 (from light to dark blue). d, Sample complexity of QCNN at depths d!=!1, 
…, 4 (from light to dark blue) versus SOPs of length N/2, N/3, N/5 and N/6 (from light to dark red) to detect the SPT/paramagnet phase transition along 
h1!=!0.5J for N!=!135 spins. The critical point is identified as h2/J!=!0.423 using infinite-size DMRG. In the shaded area, the correlation length exceeds the 
system size, and finite-size effects can considerably affect our results. Inset: the ratio of SOP sample complexity to QCNN sample complexity is plotted as 
a function of d on a logarithmic scale for h2/J!=!0.3918. In the numerically accessible regime, this reduction of sample complexity scales exponentially as 
1.73e0.28d (trendline).
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A QCNN to classify N-qubit input states is thus characterized 
by O(log(N)) parameters. This corresponds to a double exponential 
reduction compared with a generic quantum circuit-based classifier19 
and allows for efficient learning and implementation. For example, 
given a set of M classified training vectors {(|ψα〉, yα): α = 1, …, M}, 
where |ψα〉 are input states and yα = 0 or 1 are corresponding binary 
classification outputs, one could compute the mean squared error

MSE ¼ 1
2M

XM

α¼1

yi " ffUi;Vj;Fg ψαj ið Þ
! "2

ð1Þ

Here, ffUi;Vj;Fg ψαj ið Þ
I

 denotes the expected QCNN output value for 
input |ψα〉. Learning then consists of initializing all unitaries and 
successively optimizing them until convergence, for example via 
gradient descent.

To gain physical insight into the mechanism underlying QCNNs 
and motivate their application to the problems under consideration, 
we now relate our circuit model to two well-known concepts in 
quantum information theory—the multiscale entanglement renor-
malization ansatz26 (MERA) and QEC. The MERA framework pro-
vides an efficient tensor network representation of many classes of 
interesting many-body wavefunctions, including those associated 
with critical systems26–28. A MERA can be understood as a quantum 
state generated by a sequence of unitary and isometry layers applied 

to an input state (for example |00〉). While both types of layers apply 
quasilocal unitary gates, each isometry layer first introduces a set 
of new qubits in a predetermined state, such as |0〉 (Fig. 1c). This 
exponentially growing, hierarchical structure allows for the long-
range correlations associated with critical systems. The QCNN cir-
cuit has similar structure but runs in the reverse direction. Hence, 
for any given state |ψ〉 with a MERA representation, there is always 
a QCNN that recognizes |ψ〉 with deterministic measurement out-
comes; one such QCNN is simply the inverse of the MERA circuit.

For input states other than |ψ〉, however, such a QCNN does not 
generally produce deterministic measurement outcomes. These 
additional degrees of freedom distinguish a QCNN from a MERA. 
Specifically, we can identify the measurements as syndrome mea-
surements in QEC29, which determine error correction unitaries 
Vj to apply to the remaining qubit(s). Thus, a QCNN circuit with 
multiple pooling layers can be viewed as a combination of a MERA 
(an important variational ansatz for many-body wavefunctions) 
and nested QEC (a mechanism to detect and correct local quantum 
errors without collapsing the wavefunction). This makes QCNNs a 
powerful architecture for classifying input quantum states or devis-
ing new QEC codes. In particular, for QPR, the QCNN can provide 
a MERA realization of a representative state |ψ0〉 in the target phase. 
Other input states within the same phase can be viewed as |ψ0〉 with 
local errors, which are repeatedly corrected by the QCNN in mul-
tiple layers. In this sense, the QCNN circuit can mimic renormal-
ization-group flow, a methodology that successfully classifies many 
families of quantum phases30. For QEC optimization, the QCNN 
structure allows for simultaneous optimization of efficient encoding 
and decoding schemes with potentially rich entanglement structure.

Detecting a 1D symmetry-protected topological phase
We first demonstrate the potential of a QCNN by applying it to 
QPR in a class of 1D many-body systems. Specifically, we consider a 
Z2 ´Z2
I

 symmetry-protected topological (SPT) phase P
I
, a phase con-

taining the S = 1 Haldane chain31, and ground states {|ψG〉} of a family 
of Hamiltonians on a spin-1/2 chain with open boundary conditions:

H ¼ "J
XN"2

i¼1

ZiXiþ1Ziþ2 " h1
XN

i¼1

Xi " h2
XN"1

i¼1

XiXiþ1 ð2Þ

where Xi, Zi are Pauli operators for the spin at site i, and h1, h2 and J 
are parameters of the Hamiltonian. The Z2 ´Z2

I
 symmetry is gener-

ated by XevenðoddÞ ¼
Q

i2evenðoddÞ
Xi

I

. Figure 2a shows the phase diagram 

as a function of (h1/J, h2/J). When h2 = 0, the Hamiltonian is exactly 
solvable via the Jordan–Wigner transformation30, confirming that P

I
 

is characterized by non-local order parameters. When h1 = h2 = 0, all 
terms are mutually commuting, and a ground state is the 1D cluster 
state. Our goal is to identify whether a given, unknown ground state 
drawn from the phase diagram belongs to P

I
.

As an example, we first present an exact, analytical QCNN cir-
cuit that recognizes P

I
 (Fig. 2b). The convolution layers involve 

controlled-phase gates as well as Toffoli gates with controls in the 
X-basis, and pooling layers perform phase-flips on remaining qubits 
when one adjacent measurement yields X = −1. This convolution–
pooling unit is repeated d times, where d is the QCNN depth. The 
fully connected layer measures Zi−1XiZi+1 on the remaining qubits. 
Figure 2c shows the QCNN output for a system of N = 135 spins 
and d = 1, …, 4 along h1 = 0.5J, obtained using matrix product 
state simulations. As d increases, the measurement outcomes show 
sharper changes around the critical point, and the output of a d = 2 
circuit already reproduces the phase diagram with high accuracy 
(Fig. 2a). This QCNN can also be used for other Hamiltonian mod-
els belonging to the same phase, such as the S = 1 Haldane chain31 
(see Methods).
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Fig. 1 | The concept of QCNNs. a, Simplified illustration of classical CNNs. 
A sequence of image-processing layers transforms an input image into 
a series of feature maps (blue rectangles) and finally into an output 
probability distribution (purple bars). C, convolution; P, pooling; FC, fully 
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MERA share the same circuit structure, but run in reverse directions. Image 
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QQ: QUANTUM CHANNEL DISCRIMINATION

⇢(x)
x

detect objects x
from the scattered
state of light ⇢(x)

obstacle
c = yes/no

Images live in the physical world


Optimise the (entangled) input probe state of light and the detection POVM 



QUANTUM BARCODES AND PATTERN RECOGNITION

▸ Barcode classification must identify each 
pixel correctly


▸ Handwriting classification is easier as errors 
are tolerated! 


▸             ￼ 


‣ L. Banchi, Q. Zhuang, S. Pirandola,                                  
Phys. Rev. Applied 14, 064026 (2020)


‣ C Harney, L Banchi, S Pirandola,                                       
Phys. Rev. A 103, 052406 (2021)


‣ JL Pereira, L Banchi, Q Zhuang, S Pirandola,                 
Phys. Rev. A 103, 042614 (2021)
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QC: LEARNING QUANTUM SYSTEMS USING CLASSICAL ML

ARTICLE OPEN

Quantum gate learning in qubit networks: Toffoli gate without
time-dependent control
Leonardo Banchi1, Nicola Pancotti2,3 and Sougato Bose1

We put forward a strategy to encode a quantum operation into the unmodulated dynamics of a quantum network without the
need for external control pulses, measurements or active feedback. Our optimisation scheme, inspired by supervised machine
learning, consists in engineering the pairwise couplings between the network qubits so that the target quantum operation is
encoded in the natural reduced dynamics of a network section. The efficacy of the proposed scheme is demonstrated by the
finding of uncontrolled four-qubit networks that implement either the Toffoli gate, the Fredkin gate or remote logic operations. The
proposed Toffoli gate is stable against imperfections, has a high fidelity for fault-tolerant quantum computation and is fast, being
based on the non-equilibrium dynamics.

npj Quantum Information (2016) 2, 16019; doi:10.1038/npjqi.2016.19; published online 19 July 2016

INTRODUCTION
Computational devices based on the laws of quantum mechanics
hold promise to speed up many algorithms known to be hard for
classical computers.1 The implementation of a full-scale computa-
tion with existing technology requires an outstanding ability to
maintain quantum coherence (i.e., isolation from the environment)
without compromising the ability to control the interactions
among the qubits in a scalable way. Among the most successful
paradigms of quantum computation, there is the ‘circuit model’,
in which the algorithm is decomposed into an universal set of
single- and two-qubit gates,2 and, to some extent, the so-called
adiabatic quantum computation (AQC),3 in which the output of
the algorithm is encoded in the ground state of an interacting
many-qubit Hamiltonian. A different approach4 is based on the
use of always-on interactions, naturally occurring between
physical qubits, to accomplish the computation. Compared with
the circuit model, this scheme has the advantage of requiring
minimal external control and avoiding the continuous switch off
and on of the interactions between all but two qubits, whereas
compared with AQC it has the advantage of being faster, being
based on the non-equilibrium evolution of the system. Quantum
computation with always-on interactions is accomplished by
combining the natural couplings with a moderate external control,
e.g., with a smooth shifting of Zeeman energies,5 via feed-forward
techniques,6 using measurement-based computation7 or quantum
control.8,9 Most of these approaches are based on the assumption
that the natural couplings are fixed by nature and not tunable,
whereas local interactions can be modulated with external fields.
However, the amount of external control required can be
minimised if the couplings between the qubits can be statically
tuned10—e.g., during the creation of the quantum device.
The recent advances in the fabrication of superconducting

quantum devices has opened up to the realisation of interacting
quantum networks. In a superconducting device, the qubits are
built with a Josephson tunnel element, an inductance and a

capacitor,11 whereas local operations and measurements are
performed by coupling the qubit to a resonator.12 The interactions
can be designed using lithographic techniques by jointly coupling
two qubits via a capacitor13 or an inductance,14 and can be
modelled via an effective two-body Hamiltonian

P
αJασα ! σα

15,16

where σα are the Pauli matrices. Because of the flexibility in wiring
the pairwise interactions among the qubits, it is possible to
arrange them in a planar graph structure, namely a collection of
vertices and links, in which the vertices correspond to the qubits
and the links correspond to the two-body interactions between
them. Moreover, thanks to the development of three-dimensional
superconducting circuits,17 it may be possible in the near future
to wire also non-planar configurations, namely a general qubit
network.
Motivated by the above, we ask the following question: is it

possible to encode a quantum algorithm into the unmodulated
dynamics of a suitably large quantum network of pairwise
interacting qubits? This would be extremely interesting, as it
would enable quantum computation by simply ‘waiting’, without
the need of continuously applying external control pulses or
measurements. Even when sequential operations cannot be
avoided, our scheme can enable the in-hardware implementation
of recurring multi-qubit operations of a quantum algorithm (see
e.g., Figure 1), such as quantum arithmetic operations,18 and
possibly also the quantum Fourier transform or error-correcting
codes.1 We focus on two-body interactions, as they are the most
common in physical setups, and we consider an enlarged network
in which auxiliary qubits enrich the quantum dynamics. The
important question analysed in this paper is as follows: given a
target unitary operation UQ on a given set of qubits Q, we consider
an extended network Q∪A in which A is a set of auxiliary qubit
(ancillae), and we ask whether it is possible to engineer the
pairwise interactions in Q∪ A, modelled by the time-independent
Hamiltonian HQA, such that eitHQA ¼ UQ ! VA after some time t
(VA may be an extra unitary operation on the auxiliary space). More
generally, the target operation can depend also on the ancillae
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time-dependent control
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We put forward a strategy to encode a quantum operation into the unmodulated dynamics of a quantum network without the
need for external control pulses, measurements or active feedback. Our optimisation scheme, inspired by supervised machine
learning, consists in engineering the pairwise couplings between the network qubits so that the target quantum operation is
encoded in the natural reduced dynamics of a network section. The efficacy of the proposed scheme is demonstrated by the
finding of uncontrolled four-qubit networks that implement either the Toffoli gate, the Fredkin gate or remote logic operations. The
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Abstract
Quantumsystems interactingwith anunknownenvironment arenotoriouslydifficult tomodel, especially
inpresenceofnon-Markovianandnon-perturbative effects.Herewe introduce aneural networkbased
approach,whichhas themathematical simplicity of theGorini–Kossakowski–Sudarshan–Lindbladmaster
equation, but is able tomodelnon-Markovian effects indifferent regimes.This is achievedbyusing
recurrentneural networks (RNNs) fordefiningLindbladoperators that cankeep trackofmemory effects.
Buildingupon this framework,we also introduce aneural network architecture that is able to reproduce the
entire quantumevolution, given an initial state.As anapplicationwe studyhow to train thesemodels for
quantumprocess tomography, showing thatRNNsare accurate overdifferent times and regimes.

1. Introduction

Traditionally, in the physical sciences, the study ofmathematical problems forwhich no analytic solution is
available involvesmodellingmethods leveraging a combination of approximation techniques (such as
perturbation theory or semiclassical approaches) and the use of symmetries to reduce the complexity of the
problem. Recently, advances inmachine learning [1, 2], have caused a surge in popularity of data-driven
approaches, which instead rely on computational techniques that exploit statistical correlations. Applications
range from chaos theory [3] to high energy physics [4], eventually showingmany applications and new
perspectives in the quantumdomain [5–8]. In particular, artificial neural networks (a class of learningmethods
inspired by the functioning of the brain) have been utilized in quantummany-body physics for ground state
estimation [9], quantum state tomography [10, 11], classification of phases ofmatter [12], entanglement
estimation [13], and to identify phase transitions [14]. Although the theoretical understanding of the
effectiveness of thesemodels is currently limited, some recent papers have established connections between
neural networks andmore standard frameworks such as renormalization group [15], tensor networks [16–18],
and complexity theoretic tools [19].Moreover, classical optimization techniques borrowed from supervised
machine learning have been employed to optimize the dynamics ofmany-body systems [20–24] and parametric
quantum circuits [25–31].

Open quantum systems [32, 33] present further challenges. Here, anymodelling effortmust take into
account that the system interacts with a surrounding environment, whosemicroscopic details are usually
unknown. The resulting effects can only be treated phenomenologically and significantly increase the
complexity of themodel, especially in the non-Markovian regime. In this regime, exact non-perturbativemaster
equations [34] or quantummaps [35] operate by entangling the systemwith ancillary degrees of freedomwhose
dimension growswith time. Thismakes exact simulations extremely challenging even for low dimensional
Hilbert spaces. Therefore, in larger systems, non-Markovian effects can only bemodelled in an approximate
fashion, e.g. by neglecting quantum correlations or by assumingweak couplings between system and
environment.When these approximations are justified, phenomenological models with a reduced number of
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depend on t, andmemory of the past is taken into account by the function f, which compresses and saves relevant
informations of previous sequences intomemory cells. This architecture allows RNNs to learn temporal
sequences using a relatively small number of parameters, evenwhen the temporal data has long-rangememory
effects. Themapping between ℓst and +ℓst

1defines a RNNcell.
In this workwe use a variant of RNNcalledGated RecurrentUnit (GRU), whose basic cell is shown in

figure 1 and discussed in the appendix. GRUs use a gatingmechanism that allows them to bettermodel long-
termdependencies thanmore simple RNNs [61]. GRUs are based on a type of RNNcell called Long Short-Term
Memory (LSTM), but can bemore efficient than LSTMs for comparable performance [62, 63]. GRU and LSTM
are commonly used and achieve state of the art performance for sequencemodelling acrossmultiple domains,
includingmachine translation, image captioning and forecasting [64].

TheGRU state st is a linear interpolation of the previous state st−1 and a candidate state s̃t , which depends on
the auxiliary input xt. The input x

j
t for a depth j cell at time t is the state from the cell in the previous layer -st

j 1.
GRU cells can be stacked to form a deepGRUnetwork.More details can be found in the appendix.

3.Main idea

In this sectionwe present the threemain contributions of this paper which all leverage on themodelling
capabilities of RNNs to describe non-Markovian dynamics of open quantum systems. First, we describe amaster
equation approach. Second, we use RNNs to predict the time evolution of quantum state under a non-
Markovian quantumprocess. Third, we showhow these two techniques can be utilized to performquantum
process tomography.

3.1. RNNquantummaster equation
Wepostulate a quantum evolution similar to equation (1), namely
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where the notation�t refers to a superoperator that not only depends on t, but also on the entire history before
time t, as in the TCLmaster equation (3). A convenient choice is then that of theGKSL form
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whereHLS is a ‘Lamb-shift’ term, namely a correction to theHamiltonian inducedby the environment,while Lμ

are Lindblad operators. The reason for this choice is that for small enoughΔt the time evolution is simply given by
r r+ D » D( ) [ ( )]t tet t t , and since t is in theGKSL form, De t t is a completely positive trace preserving

quantumchannel,mapping states to states. IfHLS andLμ are simply time-dependent functions, namely they only
dependon t andnot onprevious times, then the dynamics generatedby abovemaster equation is alwaysMarkovian
[59]. Themain idea of thiswork is to use aRNNtodefine each Lindblad operator 

mL t and the correction
Hamiltonian H t

LS
j
, seefigure 2(a). In order to ensure theHermiticity of the H t

LS operator,we construct it as

Figure 1.Network diagramof theGRU cell. The output st and input st−1 represent the state at times t and t−1, respectively, while xt is
an auxiliary input that depends on the previous times, before t−1. Rectangles represent neural network layers. Circles represent
entry-wise operations. Bifurcations represent copy operations and joined lines represent concatenation. Details are presented in the
appendix.
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DOES THE MODEL 
GENERALISE?



 FOUNDATIONAL QUESTION: WHAT CAN WE EXPECT?

▸ We have a training set ￼  made of  ￼  correctly 
classified states ￼ 


▸ We can empirically check generalisation using a 
testing set ￼  with ￼  correctly classified states


▸ How difficult is to define a reliable classier, 
given the available data?

𝒯 T
𝒯 = {(ρ(xt), ct) for t = 1,…, T}

𝒯′￼ T′￼

class 2

class 1ρ(x1)

ρ(x2)
ρ(x3)

ρ(x5)

ρ(x4)
ρ(x7)

ρ(x6)
ρ(x8)

ρ(x)

x

c = 1 or c = 2 ?



Empirical loss / training error


￼ 


Abstract classification error


￼ 


Optimal empirical measurement  ￼  


Real optimal ￼  


Testing error   


￼

R𝒯(Π, ρ) =
1
T ∑

(ck,xk)∈𝒯
∑
c≠ck

Tr[Πcρ(xk)] = 1 −
1
T ∑

(ck,xk)∈𝒯

Tr[Πck
ρ(xk)]

R(Π, ρ) = 𝔼(c,x)∼P(c,x) ∑
c≠c̃

Tr[Πc̃ρ(x)] = 1 − 𝔼(c,x)∼P(c,x)Tr[Πcρ(x)]

Π𝒯 = argminΠR𝒯(Π, ρ)

Π* = argminΠR(Π, ρ)

R𝒯′￼
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STATISTICAL LEARNING THEORY

▸ The generalisation error ￼  is the difference between the (average) training and 
testing error 


▸ A fundamental result of statistical learning theory binds ￼  using the 
Rademacher complexity 
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APPENDIX A: EXTENDED DERIVATION

1. Statistical learning theory
Here we show a brief overview of the tools from sta-

tistical learning theory [36] that we use throughout the
manuscript. As in the previous chapters, we assume that
there exists an abstract probability distribution that mod-
els the inputs and their corresponding classes P(c, x). This
distribution is obviously unknown, but by construction, the
samples in the training set T are drawn independently from
P(c, x). Suppose now that we have built a classifier h ∈ H,
where H is the set of classifiers that we are considering. We
may define the error due to misclassification via the loss
function !h(c, x), which is zero if and only if c is the correct
class of x. Training is done by minimizing the empirical
risk, namely the average loss over the training set

RT (h) = 1
T

T∑

k=1

!h(ck, xk), (A1)

while the “true” risk of a classifier h is given by

R(h) = E
(c,x)∼P

[!h(c, x)]. (A2)

Supervised learning is practically done via empirical risk
minimization, namely the optimal data-driven classifier is
obtained from

hT = argmin
h∈H

RT (h). (A3)

The generalization error defines how hT performs with
unseen data, i.e., data not present in the training set. For-
mally the generalization error is then defined as R(hT ) −
infh∈H R(h). Setting h∗ = argminh∈HR(h) as the true opti-
mal classifier, we may bound the generalization error G
as

G = R(hT ) − R(h∗)

= R(hT ) − RT (hT ) + RT (hT ) − RT (h∗)

+ RT (h∗) − R(h∗)

≤ R(hT ) − RT (hT ) + RT (h∗) − R(h∗)

≤ 2 sup
h∈H

|R(h) − RT (h)|, (A4)

where in the first inequality we used the fact that hT is
optimal for RT ; therefore, RT (hT ) ≤ RT (h∗). The upper
bound is known as the uniform deviation bound. It repre-
sents the maximum deviation between the true and empir-
ical risks, Eqs. (A1)–(A2), maximized over the possible
classifiers.

The goal of statistical learning theory is to study how
much larger the risk R(hT ) is than the Bayes risk, namely
RBayes = infh R(h), where the infimum is over all possi-
ble hypotheses, not restricted to H. Then by summing and
subtracting R(h∗) we get

R(hT ) − RBayes = G + A, (A5)

where A = R(h∗) − RBayes is the approximation error,
which depends on the hypothesis space H. One of the cen-
tral results of statistical learning theory is the following
[36]: if ! has support in [0, 1] then, with probability at least
1 − δ, we have

G ≤ 4CT(H) +
√

2 log(1/δ)

T
, (A6)

where CT(H) is the Rademacher complexity of H, which
is defined as

CT(H) := E
T ∼PT

E
σ

[
sup
h∈H

1
T

T∑

k=1

σk!h(ck, xk)

]
, (A7)

where σk is a random variable that can take two possible
values, ±1, with the same probability 1/2, and the notation
T ∼ PT means that the T elements in the training set T
are sampled independently from the distribution P. From
Eq. (A6) we see that if the Rademacher complexity of H
decreases with T then, for sufficiently large T, the model is
able to generalize and correctly predict the class of a new
input, not present in the training set T .

2. Quantum Rademacher complexity
Let us calculate the Rademacher complexity of the

quantum loss function introduced in Eq. (2), for which
it is clear from the definition that 0 ≤ !(ck, xk) ≤ 1, as
requested. For a fixed embedding, defining P as the set of
all possible POVMs, the Rademacher complexity of this
quantum classifier (2) is

CT(P) := E
T ∼PT

E
σ

[
sup

{$c}∈P

1
T

T∑

k=1

σk
∑

c &=ck

Tr[$cρ(xk)]
]

= E
T ∼PT

E
σ

[
sup

{$c}∈P

1
T

T∑

k=1

σkTr[$ckρ(xk)]
]

, (A8)

where in the second line we used the second equality in
Eq. (2), the fact that the constant term [from substituting
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APPENDIX A: EXTENDED DERIVATION

1. Statistical learning theory
Here we show a brief overview of the tools from sta-

tistical learning theory [36] that we use throughout the
manuscript. As in the previous chapters, we assume that
there exists an abstract probability distribution that mod-
els the inputs and their corresponding classes P(c, x). This
distribution is obviously unknown, but by construction, the
samples in the training set T are drawn independently from
P(c, x). Suppose now that we have built a classifier h ∈ H,
where H is the set of classifiers that we are considering. We
may define the error due to misclassification via the loss
function !h(c, x), which is zero if and only if c is the correct
class of x. Training is done by minimizing the empirical
risk, namely the average loss over the training set

RT (h) = 1
T

T∑

k=1

!h(ck, xk), (A1)

while the “true” risk of a classifier h is given by

R(h) = E
(c,x)∼P

[!h(c, x)]. (A2)

Supervised learning is practically done via empirical risk
minimization, namely the optimal data-driven classifier is
obtained from

hT = argmin
h∈H

RT (h). (A3)

The generalization error defines how hT performs with
unseen data, i.e., data not present in the training set. For-
mally the generalization error is then defined as R(hT ) −
infh∈H R(h). Setting h∗ = argminh∈HR(h) as the true opti-
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G = R(hT ) − R(h∗)

= R(hT ) − RT (hT ) + RT (hT ) − RT (h∗)

+ RT (h∗) − R(h∗)

≤ R(hT ) − RT (hT ) + RT (h∗) − R(h∗)

≤ 2 sup
h∈H

|R(h) − RT (h)|, (A4)

where in the first inequality we used the fact that hT is
optimal for RT ; therefore, RT (hT ) ≤ RT (h∗). The upper
bound is known as the uniform deviation bound. It repre-
sents the maximum deviation between the true and empir-
ical risks, Eqs. (A1)–(A2), maximized over the possible
classifiers.
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RBayes = infh R(h), where the infimum is over all possi-
ble hypotheses, not restricted to H. Then by summing and
subtracting R(h∗) we get

R(hT ) − RBayes = G + A, (A5)

where A = R(h∗) − RBayes is the approximation error,
which depends on the hypothesis space H. One of the cen-
tral results of statistical learning theory is the following
[36]: if ! has support in [0, 1] then, with probability at least
1 − δ, we have

G ≤ 4CT(H) +
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T
, (A6)

where CT(H) is the Rademacher complexity of H, which
is defined as

CT(H) := E
T ∼PT

E
σ

[
sup
h∈H

1
T

T∑

k=1

σk!h(ck, xk)

]
, (A7)

where σk is a random variable that can take two possible
values, ±1, with the same probability 1/2, and the notation
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are sampled independently from the distribution P. From
Eq. (A6) we see that if the Rademacher complexity of H
decreases with T then, for sufficiently large T, the model is
able to generalize and correctly predict the class of a new
input, not present in the training set T .

2. Quantum Rademacher complexity
Let us calculate the Rademacher complexity of the

quantum loss function introduced in Eq. (2), for which
it is clear from the definition that 0 ≤ !(ck, xk) ≤ 1, as
requested. For a fixed embedding, defining P as the set of
all possible POVMs, the Rademacher complexity of this
quantum classifier (2) is
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TAKE HOME MESSAGE

▸ Computable upper bound via information 
theoretic quantities


▸ Generalisation favoured by discarding 
information about the input that is irrelevant for 
predicting the output. Quantum compression? 


▸ Algorithm: variational information bottleneck


▸ Quantum convolutional neural networks 
iteratively discard information via pooling 
layers.


▸ Algorithmic-independent data-dependent 
bounds 


▸ Greater physical insight  (wait for QQ!)
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APPLICATIONS



INFORMATION BOTTLENECK FOR QUANTUM CLASSIFIERS

▸ ￼  as “bottleneck” that squeezes the 
relevant information that ￼  provides 
about ￼ . Compression with side 
information 


▸ IB principle (loss independent): 
minimise


▸                  ￼ 


▸ Self-consistent solutions (similar for ￼ )


▸    ￼

ρ(x)
x

c

ℒIB = I(X:Q) − βI(C:Q)

ρ

λ̃z |ψ(z)⟩ = e(1−β)log ρ̄+β∑c P(c|z)log ρc |ψ(z)⟩
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VARIATIONAL QUANTUM INFORMATION BOTTLENECK (CQ)

Single-qubit 


“Data Re-uploading” 


Classifier

quantum circuit where all data are loaded in the co-
e�cients of the initial wave function [8, 9, 13–15]. In
the simplest of cases, data are uploaded as rotations of
qubits in the computational basis. A quantum circuit
would then follow that should perform some classifi-
cation.

This strategy would be insu�cient to create a uni-
versal quantum classifier with a single qubit. A first
limitation is that a single qubit only has two degrees
of freedom, thus only allowing to represent data in
a two-dimensional space. No quantum classifier in
higher dimensions can be created if this architecture
is to be used. A second limitation is that, once data
is uploaded, the only quantum circuit available is a
rotation in the Bloch sphere. It is easy to prove that
a single rotation cannot capture any non-trivial sepa-
ration of patterns in the original data.

We need to turn to a di↵erent strategy, which turns
out to be inspired by neural networks. In the case of
feed-forward neural networks, data are entered in a
network in such a way that they are processed by sub-
sequent layers of neurons. The key idea is to observe
that the original data are processed several times, one
for each neuron in the first hidden layer. Strictly
speaking, data are re-uploaded onto the neural net-
work. If neural networks were a↵ected by some sort
of no-cloning theorem, they could not work as they
do. Coming back to the quantum circuit, we need to
design a new architecture where data can be intro-
duced several times into the circuit.

The central idea to build a universal quantum clas-
sifier with a single qubit is thus to re-upload classical
data along with the computation. Following the com-
parison with an artificial neural network with a single
hidden layer, we can represent this re-upload diagram-
matically, as it is shown in Figure 1. Data points in a
neural network are introduced in each processing unit,
represented with squares, which are the neurons of the
hidden layer. After the neurons process these data, a
final neuron is necessary to construct the output to be
analyzed. Similarly, in the single-qubit quantum clas-
sifier, data points are introduced in each processing
unit, which this time corresponds to a unitary rota-
tion. However, each processing unit is a↵ected by the
previous ones and re-introduces the input data. The
final output is a quantum state to be analyzed as it
will be explained in the next subsections.

The explicit form of this single-qubit classifier is
shown in Figure 2. Classical data are re-introduced
several times in a sequence interspaced with process-
ing units. We shall consider the introduction of data
as a rotation of the qubit. This means that data from
three-dimensional space, x̨, can be re-uploaded using
unitaries that rotate the qubit U(x̨). Later processing
units will also be rotations as discussed later on. The
whole structure needs to be trained in the classifica-
tion of patterns.

As we shall see, the performance of the single-qubit

(a) Neural network (b) Quantum classifier

Figure 1: Simplified working schemes of a neural network

and a single-qubit quantum classifier with data re-uploading.

In the neural network, every neuron receives input from all

neurons of the previous layer. In contrast with that, the

single-qubit classifier receives information from the previous

processing unit and the input (introduced classically). It pro-

cesses everything all together and the final output of the

computation is a quantum state encoding several repetitions

of input uploads and processing parameters.

quantum classifier will depend on the number of re-
uploads of classical data. This fact will be explored
in the results section.

2.2 Processing along re-uploading
The single-qubit classifier belongs to the category of
parametrized quantum circuits. The performance of
the circuit is quantified by a figure of merit, some
specific ‰2 to be minimized and defined later. We
need, though, to specify the processing gates present
in the circuit in terms of a classical set of parameters.

Given the simple structure of a single-qubit circuit
presented in Figure 2, the data is introduced in a sim-
ple rotation of the qubit, which is easy to character-
ize. We just need to use arbitrary single-qubit rota-
tions U(„1, „2, „3) œ SU(2). We will write U(„̨) with

„̨ = („1, „2, „3). Then, the structure of the universal
quantum classifier made with a single qubit is

U(„̨, x̨) © U(„̨N )U(x̨) . . . U(„̨1)U(x̨), (1)

which acts as
|ÂÍ = U(„̨, x̨)|0Í. (2)

The final classification of patterns will come from
the results of measurements on |ÂÍ. We may introduce
the concept of processing layer as the combination

L(i) © U(„̨i)U(x̨), (3)

so that the classifier corresponds to

U(„̨, x̨) = L(N) . . . L(1), (4)

where the depth of the circuit is 2N . The more layers
the more representation capabilities the circuit will
have, and the more powerful the classifier will be-
come. Again, this follows from the analogy to neural
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For two-qubit states the “re-upoading” embedding can 
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We then train a fidelity classifier [19] to recognize the
phases of the quantum Ising model (27). In general, the
fidelity classifier associates to an unknown state |ψ〉 the
class of the state from the training set with highest fidelity
with |ψ〉. Such fidelity can be estimated via the SWAP test
using S shots, namely S copies of |ψ〉. Since the SWAP
test measurement operator is idempotent, the result of the
SWAP test is a Bernoulli random variable with mean F , the
fidelity, and variance F(1 − F)/S. The fidelity measure-
ment provides a nonoptimal classification POVM, so this
classifier is expected to perform slightly worse then the
optimal strategies discussed theoretically in the previous
sections.

For numerical simulations, we consider a training set
with T random elements with h > 1 and T random ele-
ments with h < 1, and verify the quantum phase recogni-
tion problem by generating new testing states |"GS(h)〉 for
h uniformly distributed in [0, 2]. In Fig. 7(b) we numer-
ically observe that even with T = 1 the testing error is
almost zero, except near the critical point. By increasing
the number of shots, the fidelity is estimated more pre-
cisely, and given that states belonging to different phases
have very low fidelity, as shown in Fig. 7(a), the testing
error decreases. When T ≈ B, the training error is nor-
mally very low, except near the critical point. For T =
10 $ B, we always find zero training error, irrespective
of the number of shots. Therefore, this analysis confirms
the predictions of our Theorem 1.

B. Variational quantum information bottleneck
We now focus on using a quantum algorithm to clas-

sify classical data. In this case, the states ρ(x) are not
fixed by the problem, as in the previous section, and can
be optimized together with the measurement POVM. The
embedding x %→ ρ(x) can be optimized by training a quan-
tum circuit as in Fig. 1. More specifically, we consider
one of the simplest yet most general classification circuits
with a single-qubit classifier, dubbed “data reuploading”
[8]: here we use a slightly modified version where the
embedding is obtained as a composition of L layers of
x-dependent single-qubit rotations around the y and z axes

|ψw(x)〉 =
L∏

$=1

[Rz(wz$ · x+wz$
0 )Ry(wy$ · x+wy$

0 )]|0〉, (30)

where Rα(θ) = eiθσα , the σα are the Pauli matrices, and the
weight tensor wα$k can be optimized during training.

Based on the quantum information bottleneck principle
proposed in Sec. B we study the variational minimization
of the QIB Lagrangian (24) with respect to the parametric
states (30). For single-qubit states, the entropies in Eq. (24)
can be expressed without loss of generality in terms of the

purity as

S(ρ) = −(λ− log2 λ−) − (λ+ log2 λ+) =: s(P), (31)

where

λ±(ρ) = 1 ±
√

2P(ρ) − 1
2

(32)

are the eigenvalues of ρ, which depend only on the purity
P(ρ) = Tr[ρ2]. Since the state (30) is pure, S[ρ(x)] = 0
in Eq. (24). Moreover, in order to train the embedding, we
approximate the averages over the distribution P(c, x) with
empirical averages over the elements of the training set T ,
so from Eq. (24) we get

LT
IB = (1 − β)s(Ptot) + β

∑

c

Tc

T
s(Pc), (33)

where constant terms have been neglected, and by explicit
computation, the purities read

Ptot =
T + 2

∑T
x<y F[ρ(x), ρ(y)]2

T2 , (34)

Pc =
Tc + 2

∑Tc
x<y F[ρ(x), ρ(y)]2

T2
c

, (35)

where
∑T refers to the double sum over the elements

(cx, x), (cy , y) from the training set, while in
∑Tc the sum is

restricted over elements with class cx = cy = c. The order-
ing x < y refers to the index of the inputs in the training
set, and is used just to avoid double counting.

As an example for numerical simulations, we consider
a binary classification problem with the 2-moons dataset
shown in Fig. 8(a), where each point is described by two
real coordinates x ≡ (x1, x2). Moon points are organized
in the two different patterns shown with different col-
ors in Fig. 8(a), which represent the two classes. Data
have been generated using a noise parameter 0.3, which
makes the classification less deterministic. We generate
a training set of 100 samples per class and optimize Eq.
(33) using the Nelder-Mead algorithm with starting point
wα$k = 0 (constant embedding). In Figs. 8(b) and 8(c),
we show the fidelity between two trained embeddings
F[ρ(x), ρ(y)], where training is performed using either
β = 30 or β = 1.5. After training, we use the fidelity clas-
sifier [19] to study both the training and testing errors.
Unlike the previous section, here we study an exact evalua-
tion of the fidelity, which would require an infinite amount
of measurement shots. The training error we get with the
optimized embedding is always zero. This is consistent
with our theoretical analysis (see Theorem 3 in Appendix
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FIG. 8. (a) Union of the training and testing sets from a gen-
erated 2-moon dataset. Data (filled circles) with different colors
belong to two different classes. Wrongly classified data in the
testing set after training are marked with a red diagonal cross
(β = 30) or with a blue cross (β = 1.5). (b) Fidelity F between
two embeddings for β = 30, using the data from (a). Data points
are ordered to first have all points from the first class and then all
points from the second class. Dark black points represent F ! 0,
while light yellow points represent F ! 1. (c) Fidelity F between
two embeddings, as in (b) but for β = 1.5. White points represent
F = 1 while dark red points have infidelity 1 − F ! 10−7.

A), as for N → ∞ copies we may formally get zero
approximation error.

As shown in Fig. 8(b), for large β, the trained embed-
ding is able to separate most data points belonging to
different classes into almost orthogonal quantum states.
More precisely, the fidelity is almost zero for most inputs
belonging to different classes, yet being mostly very high
for states belonging to the same class, thus signaling good
generalization. Indeed, by generating a testing set with 100
elements per class [also shown in Fig. 8(a)], we observe a
testing error ! 4.5%. With a much larger testing set of 104

points we get a testing error of ! 2.6%.
Nonetheless, even better generalization can be obtained

for β = 1.5, although the optimized embedding is almost
constant, as shown in Fig. 8(c), with largest infidelity !
10−7. The testing errors over the testing sets of 100 or 104

elements per class described above are respectively 3.5%
and 1.9%, both smaller than those obtained with larger β.
The price to pay is that, due to the small infidelities, many

more measurements are needed to estimate the fidelity with
the due high precision for correct discrimination.

The wrongly classified samples in the smaller testing set
are shown in Fig. 8(a) with a cross. We observe that, for
the small β = 1.5, only the elements near the boundaries
may be wrongly classified, while for the larger β = 30, in
spite of neater class separation shown in Fig. 8(b), there
are wrongly classified samples in the “bulk” of the moons.
Something similar was also observed in the numerical
simulation shown in Fig. 6(c).

Our analysis shows that the variational quantum infor-
mation bottleneck method can be successfully used to
train quantum embeddings with different generalization
properties.

VI. CONCLUSIONS

We have introduced measures of complexity to quan-
tify the generalization and approximation capability QML
classification problems, either with general parametric
quantum states ρ(x) or quantum embeddings x %→ ρ(x)
of classical data x, when optimal measurements are per-
formed on the system. One of the main results of this
paper is the bound on the generalization error via the
Rényi mutual information I2(X :Q) between the embed-
ding space Q and the classical input space X . Thanks to
our bound, overfitting does not occur when the number
of training pairs T is much bigger than 2I2(X :Q). Moreover,
we have shown how to bound the approximation error via
the mutual information between the embedding space and
the class space, and shown that the classification error can
approach it lowest possible value (Bayes risk), in the limit
of many measurement shots or large Hilbert spaces. Our
bounds were obtained for the linear loss function, rou-
tinely employed in QHT, but different losses can be linked
to the linear loss via bounds. We have also introduced an
information bottleneck principle for quantum embeddings,
which is independent of the choice of loss function and
allows us to explore different trade-offs between accuracy
and generalization.

Based on our theoretical results and bounds, we have
studied different applications for both the classification of
quantum and classical data. In particular, we have stud-
ied the classification of the quantum phases of an Ising
spin chain and proposed the variational quantum informa-
tion bottleneck to train quantum embeddings with good
generalization properties.

Our analysis can be applied to models of moderate
complexity, such as those that can be trained with near-
term quantum hardware. It is currently an open question
to understand whether quantum classifiers of very high
complexity can mimic the generalization capabilities of
classical deep learning.
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QUANTUM PHASE RECOGNITION
▸ A Hamiltonian ￼  depends on external parameters ￼ ,               

e.g. magnetic fields etc.


▸ Depending on ￼ , the ground state of ￼  belongs to different quantum 
phases


▸ The order parameter is either unknown or too complex (e.g. non-local)


▸ For some ￼ , the Hamiltonian is either exactly solvable, so and we can 
mathematically compute its phase, or numerical approximations work well


▸ ML perspective: we use the computable points for training and then check 
generalisation to arbitrary values of ￼   

ℋ(θ) θ = (θ1, θ2, …)

θ ℋ(θ)
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QUANTUM PHASE RECOGNITION

ARTICLES NATURE PHYSICS

A QCNN to classify N-qubit input states is thus characterized 
by O(log(N)) parameters. This corresponds to a double exponential 
reduction compared with a generic quantum circuit-based classifier19 
and allows for efficient learning and implementation. For example, 
given a set of M classified training vectors {(|ψα〉, yα): α = 1, …, M}, 
where |ψα〉 are input states and yα = 0 or 1 are corresponding binary 
classification outputs, one could compute the mean squared error

MSE ¼ 1
2M

XM

α¼1

yi " ffUi;Vj;Fg ψαj ið Þ
! "2

ð1Þ

Here, ffUi;Vj;Fg ψαj ið Þ
I

 denotes the expected QCNN output value for 
input |ψα〉. Learning then consists of initializing all unitaries and 
successively optimizing them until convergence, for example via 
gradient descent.

To gain physical insight into the mechanism underlying QCNNs 
and motivate their application to the problems under consideration, 
we now relate our circuit model to two well-known concepts in 
quantum information theory—the multiscale entanglement renor-
malization ansatz26 (MERA) and QEC. The MERA framework pro-
vides an efficient tensor network representation of many classes of 
interesting many-body wavefunctions, including those associated 
with critical systems26–28. A MERA can be understood as a quantum 
state generated by a sequence of unitary and isometry layers applied 

to an input state (for example |00〉). While both types of layers apply 
quasilocal unitary gates, each isometry layer first introduces a set 
of new qubits in a predetermined state, such as |0〉 (Fig. 1c). This 
exponentially growing, hierarchical structure allows for the long-
range correlations associated with critical systems. The QCNN cir-
cuit has similar structure but runs in the reverse direction. Hence, 
for any given state |ψ〉 with a MERA representation, there is always 
a QCNN that recognizes |ψ〉 with deterministic measurement out-
comes; one such QCNN is simply the inverse of the MERA circuit.

For input states other than |ψ〉, however, such a QCNN does not 
generally produce deterministic measurement outcomes. These 
additional degrees of freedom distinguish a QCNN from a MERA. 
Specifically, we can identify the measurements as syndrome mea-
surements in QEC29, which determine error correction unitaries 
Vj to apply to the remaining qubit(s). Thus, a QCNN circuit with 
multiple pooling layers can be viewed as a combination of a MERA 
(an important variational ansatz for many-body wavefunctions) 
and nested QEC (a mechanism to detect and correct local quantum 
errors without collapsing the wavefunction). This makes QCNNs a 
powerful architecture for classifying input quantum states or devis-
ing new QEC codes. In particular, for QPR, the QCNN can provide 
a MERA realization of a representative state |ψ0〉 in the target phase. 
Other input states within the same phase can be viewed as |ψ0〉 with 
local errors, which are repeatedly corrected by the QCNN in mul-
tiple layers. In this sense, the QCNN circuit can mimic renormal-
ization-group flow, a methodology that successfully classifies many 
families of quantum phases30. For QEC optimization, the QCNN 
structure allows for simultaneous optimization of efficient encoding 
and decoding schemes with potentially rich entanglement structure.

Detecting a 1D symmetry-protected topological phase
We first demonstrate the potential of a QCNN by applying it to 
QPR in a class of 1D many-body systems. Specifically, we consider a 
Z2 ´Z2
I

 symmetry-protected topological (SPT) phase P
I
, a phase con-

taining the S = 1 Haldane chain31, and ground states {|ψG〉} of a family 
of Hamiltonians on a spin-1/2 chain with open boundary conditions:

H ¼ "J
XN"2

i¼1

ZiXiþ1Ziþ2 " h1
XN

i¼1

Xi " h2
XN"1

i¼1

XiXiþ1 ð2Þ

where Xi, Zi are Pauli operators for the spin at site i, and h1, h2 and J 
are parameters of the Hamiltonian. The Z2 ´Z2

I
 symmetry is gener-

ated by XevenðoddÞ ¼
Q

i2evenðoddÞ
Xi

I

. Figure 2a shows the phase diagram 

as a function of (h1/J, h2/J). When h2 = 0, the Hamiltonian is exactly 
solvable via the Jordan–Wigner transformation30, confirming that P

I
 

is characterized by non-local order parameters. When h1 = h2 = 0, all 
terms are mutually commuting, and a ground state is the 1D cluster 
state. Our goal is to identify whether a given, unknown ground state 
drawn from the phase diagram belongs to P

I
.

As an example, we first present an exact, analytical QCNN cir-
cuit that recognizes P

I
 (Fig. 2b). The convolution layers involve 

controlled-phase gates as well as Toffoli gates with controls in the 
X-basis, and pooling layers perform phase-flips on remaining qubits 
when one adjacent measurement yields X = −1. This convolution–
pooling unit is repeated d times, where d is the QCNN depth. The 
fully connected layer measures Zi−1XiZi+1 on the remaining qubits. 
Figure 2c shows the QCNN output for a system of N = 135 spins 
and d = 1, …, 4 along h1 = 0.5J, obtained using matrix product 
state simulations. As d increases, the measurement outcomes show 
sharper changes around the critical point, and the output of a d = 2 
circuit already reproduces the phase diagram with high accuracy 
(Fig. 2a). This QCNN can also be used for other Hamiltonian mod-
els belonging to the same phase, such as the S = 1 Haldane chain31 
(see Methods).
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string order parameter—a sum of products of exponentially many 
different SOPs that remains sharp up to the phase boundary.

MERA and QEC. Futher insights into the performance of the 
QCNN are revealed by interpreting it in terms of MERA and 
QEC. In particular, our QCNN is specifically designed to contain 
the MERA representation of the 1D cluster state (|ψ0〉) such that it 
becomes a stable fixed point. When |ψ0〉 is used as input, each con-
volution–pooling unit produces the same state |ψ0〉 with reduced 
system size in the unmeasured qubits, while yielding deterministic 
outcomes (X = 1) in the measured qubits. The fully connected layer 
measures the SOP for |ψ0〉. When an input wavefunction is per-
turbed away from |ψ0〉, our QCNN corrects such ‘errors’. For exam-
ple, if a single X error occurs, the first pooling layer identifies its 
location, and controlled unitary operations correct the error propa-
gated through the circuit (Fig. 3). Similarly, if an initial state has 
multiple, sufficiently separated errors (possibly in coherent super-
positions), the error density after several iterations of convolution 
and pooling layers will be substantially smaller35. If the input state 
converges to the fixed point, our QCNN classifies it into the SPT 
phase with high fidelity. Clearly, this mechanism resembles the clas-
sification of quantum phases based on renormalization-group flow.

Obtaining QCNN from training procedure. Having analytically 
illustrated the computational power of the QCNN circuit model, we 
now demonstrate how a QCNN for P

I
 can also be obtained using the 

learning procedure. Details of the hyperparameters of the QCNN 
can be found in the Methods and Supplementary Fig. 2. Initially, 
all unitaries are set to random values. As classically simulating our 
training procedure requires expensive computational resources, 
we focus on a relatively small system with N = 15 spins and QCNN 
depth d = 1; there are a total of 1,309 parameters to be learned (see 
Methods). Our training data consists of 40 evenly spaced points 
along the line h2 = 0, where the Hamiltonian is exactly solvable by 
the Jordan–Wigner transformation. Using gradient descent with 
the MSE function (1), we iteratively update the unitaries until con-
vergence (see Methods). The classification output of the resulting 
QCNN for generic h2 is shown in Fig. 4. This QCNN accurately 
reproduces the two-dimensional phase diagram over the entire 
parameter regime, despite being trained only on samples from a set 
of solvable points that do not even cross the lower phase boundary.

This example illustrates how the QCNN structure avoids over-
fitting to training data with its exponentially reduced number of 
parameters. While the training dataset for this particular QPR prob-

lem consists of solvable points, more generally, such a dataset can be 
obtained by using traditional methods (such as measuring SOPs) to 
classify representative states that can be efficiently generated either 
numerically or experimentally36,37.

Optimizing QEC
As seen in the previous example, the QCNN’s architecture enables 
one to perform effective QEC. We next leverage this feature to 
design a new QEC code that is itself optimized for a given error 
model. More specifically, any QCNN circuit (and its inverse) can 
be viewed as a decoding (encoding) quantum channel between the 
physical input qubits and the logical output qubit. The encoding 
scheme introduces sets of new qubits in a predetermined state, for 
example |0〉, while the decoding scheme performs measurements 
(Fig. 5a). Given an error channel N

I
, our aim is therefore to maxi-

mize the recovery fidelity

f ¼
X

ψ lj i2f± x;y;zg
ψ lh jM"1 N M ψ lj i ψ lh jð Þð Þð Þ ψ lj i ð5Þ

where MðM"1Þ
I

 is the encoding (decoding) scheme generated by 
a QCNN circuit, and |±x, y, z〉 are the ±1 eigenstates of the Pauli 
matrices. Thus, our method simultaneously optimizes both encod-
ing and decoding schemes, while ensuring their efficient imple-
mentation in realistic systems. The variational optimization can be 
carried out with an unknown N

I
, since f can be evaluated experi-

mentally.
To illustrate the potential of this procedure, we consider a two-

layer QCNN with N = 9 physical qubits and 126 variational param-
eters (Fig. 5a and Methods). This particular architecture includes 
the nested (classical) repetition codes and the 9-qubit Shor code38; 
in the following, we compare our performance to the better of the 
two. We consider three different input error models: (1) indepen-
dent single-qubit errors on all qubits with equal probabilities pμ for 
μ = X, Y and Z errors or (2) anisotropic probabilities px ≠ py = pz, 
and (3) independent single-qubit anisotropic errors with additional 
two-qubit correlated errors XiXi+1 with probability pxx.

On initializing all QCNN parameters to random values and 
numerically optimizing them to maximize f, we find that our model 
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Training along the curve ￼  where 
the model can be solved using a 
Jordan Wigner transformation

h2 = 0

If quantum phase recognition can be learnt by a QCNN, then generalisation is expected 

    MC Caro et al, Nat. Comm. 13, 4919 (2022) 𝒢 ≈
Nparameters

T
What about the physics of this problem? 



FIDELITY APPROACH TO QUANTUM PHASE TRANSITIONS

▸ Fidelity between two ground states 
￼ 


▸ Metric in parameter space ￼ 


▸ Close to the phase transition ￼  diverges


▸ States belonging to different phases are quite different


▸ States belonging to the same phase are clustered 
(mind chaotic phases though!)

F(θ, ϕ) = |⟨gs(θ) |gs(ϕ)⟩ |2

1 − F(θ, θ + dθ) = gμνdθμdθν

|g |

equation form a set of measure zero on the !−1,1" interval#.
Therefore outside the regions of criticality SN

!!! ,"" and
SN

"!! ,"" scale linearly with N.
Regarding the regions of criticality, we first consider the

scaling behavior of SN
!!! ,"" in the vicinity of the XX criti-

cality. As there always exists k0 such that in the !N→#" limit
cos xk0

→!, then for such xk0
and every finite ", it follows

from Eq. !8" that ! !$k0

!!
"→ !" sin xk0

"−1, when !N→#". In
other words, it does not scale with N $note that although
k0=k0!N" is a function of N, limN→# sin xk0

=sin arccos !#.
As all other derivatives are finite, we have that
SN

!!%!%%1,"→0"&N /"2. Similar discussion can be applied
to the case of SN

"!! ,"" in the XY region of criticality. Again,

there exists a qubit defined by k1=1 for which cos xk1
→1 in

the !N→#" limit, so that its existence could bring about the
scaling of SN

"!! ,"" larger than linear in thermodynamical
limit. Using the Taylor expansion of sine and cosine func-
tions around zero !note that in that case, sin xk1

→0 as well",
from Eq. !9" we obtain ! !$k

!"
"&xk1

/"2→0, !N→#". In other
words, SN

"!%!%=1,""&N.
Now, we turn to more interesting cases of the relevant

functions SN
!!! ,"" and SN

"!! ,"", in the XY and XX regions of
criticality, respectively. Using Taylor expansions of sine and
cosine functions around zero, we see that in != ±1 the de-

rivative ! !$k1

!!
" given by k1=1 behaves like ! !$k1

!!
"&N / !2'"" as

!N→#" $see Eq. !8"# and therefore SN
!!%!%=1,""&N2 /"2. We

FIG. 2. !Color online" !a" The overlap func-
tion &g!q" %g!q̃"', as a function of ! and ", for
N=106 and (!=("=10−6. Note the clear dips of
the plot in the regions of criticality. !b" SN

!!! ,"".
!c" SN

"!! ,"".
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FIG. 1. (Color online) Scaling of |g| for γ = 0.6 and h ∈ [0,0.8]
(left) and for γ = 0.5 and h ∈ [0.735,0.755] (right). In both cases,
"+

L = 0.3, "−
L = 0.5, "+

R = 0.1, "−
R = 0.5. Points represent the nu-

merical data, while lines are linear fits, whose results are summarized
in Table I. |g| fluctuates slightly as a function of n in the long-range
phase, and the relative amplitude of the fluctuations increases close
to the critical field hc. Due to finite-size effects and to the differential
nature of the geometric tensor, the value where |g| takes its maximum
is slightly smaller than hc, and this difference depends on n.

phases. On the “transition lines” h = 0 and h = hc one has
that |g| = O(n6), while in the rest of the phase diagram
|g| < O(n6). Furthermore, a closer inspection of the elements
of g shows that while ghh(h = 0,γ ) = O(n6), one has that
gγ γ (h = 0,γ ) = O(n): the scaling is superextensive only if
one moves away from the line h = 0 (ghh) and enters the
long-range phase, while if one moves along the h = 0 line
(gγ γ ), i.e., if one remains in the short-range phase, the scaling
is simply extensive and it matches the scaling displayed in
the other short-range phase h > hc. On the other hand, the
transition occurring at γ = 0 has a different scaling: gγ γ =
O(n2) while ghh ≈ 0. These findings can be further confirmed
by a detailed study [29] based on the analytical results available
for γ $ 1 [23]. The understanding of the transitions occurring
at h = 0 or γ = 0 is complicated by the fact that each of
these lines corresponds both to the critical line separating
two phases, but also to one of those phases. Therefore, in
these lines there are mixed features: there is both a phase
with short-range correlations and a critical line separating two
phases, which is detected by the superextensive scaling of
some metric tensor elements. Moreover, it turns out that the
introduction of the magnetic field or the anisotropy drives
different transitions whose specificity is accounted for by the
different superextensive scalings of different components of
the metric tensor.

Another important result shown in Table I is that the metric
tensor is able to signal the presence of long-range correlations:
within the long-range phase, ds2 scales superextensivity as
|g| = O(n3), and this superextensive behavior is different from
that displayed at the transition lines. One is therefore led to
conjecture that all long-range phases have a critical character,
due to the presence of long range correlations.

The findings discussed above demonstrate that the metric
tensor g, being directly linked to the correlation properties of
the Gaussian NESS, encodes all the relevant information about
the dissipative phase transition featured by the model (8). In
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FIG. 2. (Color online) Maximum eigenvalue |g| of the fidelity
metric (2) for n = 250. The Lindblad parameters are the same as
in Fig. 1. The larger value of |g| close to the phase transition line
h = hc(γ ) is not evident in Fig. 2 because of the numerical mesh,
and because the actual values of |g| for h ≈ hc can be comparable to
those of the long-range phase, depending on n (e.g., see Fig. 1). The
qualitative form of Fig. 2 is not affected by different values of the
Lindblad parameters "±

L,R and by the dimension n.

particular, the specificity of the different phases (short-range
versus long-range) and the information about the physically
relevant parameters (whether it is the magnetic field or the
anisotropy) that drive the different transitions are properly
accounted for. As shown in Fig. 2, the complete phase diagram
can indeed be reconstructed with the study of the single
function g. While these results are specific to the model
examined, the connection established in (2) roots the behavior
of g in the correlation properties of the general class of GF
states. Accordingly, one expects the fidelity approach to have
a broader scope of application. We would like to stress that
there are compelling questions that are still unanswered. In the
first place, there is the relation between g and other relevant
quantities that have been used so far to characterize NESS-
QPT. For the model (8), these are the ranges of correlations
and the finite-size scaling of the Liouvillean gap #. The
latter does not entirely capture the criticality phenomenon,
and further investigation of the relation between criticality in
NESS-QPT and geometrical and dynamical aspects is in order
[30]. Notice also that, in the XY model, different types of
symmetries (discrete versus continuous) are broken moving
away from the h = 0 or γ = 0 line. It would be interesting to
understand whether the scaling exponents of ds2 at different
lines can be related to different nonequilibrium universality
classes. Extending the present results to non-Gaussian states
[31] and transitions [32] is also an important future direction.

V. TRANSLATIONALLY INVARIANT CASE

To support the generality of the geometric approach in
understanding dissipative phase transitions, we apply our
theoretical framework to a different dissipative model, first
introduced in [19]. We consider an XY spin chain on a ring

022102-4



CLUSTERING IN HILBERT SPACES
▸ States are clustered in the (large!) Hilbert space


▸ There should be an efficient algorithm to classify 
the phases!


▸ Generalisation depends on both data and 
algorithm


▸ Data-dependent quantitative argument :

𝒢 ≈
ℬ
T

ℬ2 ≈ 1 − ∑ P(x |c)P(y |c)F(ρ(x), ρ(y))

L BANCHI, J PEREIRA, S PIRANDOLA

PRX QUANTUM 2, 040321 (2021)



QUANTUM PHASE RECOGNITION 

GENERALIZATION IN QUANTUM MACHINE LEARNING. . . PRX QUANTUM 2, 040321 (2021)

F[ρ(x), ρ(y)] is large whenever x and y belong to the same
class and small otherwise.

V. APPLICATIONS

In this section we study two different applications of our
theoretical results. The first one deals with “quantum data,”
where the parametric quantum states ρ(x) are fixed by the
problem. The second one focuses on the classification of
classical data, where the quantum embedding x !→ ρ(x)
can be optimized. In this latter case, we propose the varia-
tional quantum information bottleneck (VQIB) method for
optimizing embeddings in order to favor generalization.

A. Quantum phase recognition
In quantum phase recognition [9] the task is to rec-

ognize the phases of matter of a quantum many-body
system, by taking measurements on the quantum device
itself, without having access to a classical description of
its state. Here we focus on a paradigmatic exactly solv-
able model of quantum statistical mechanics, namely the
one-dimensional transverse-field Ising model [52]

H = −
L∑

i=1

(σ x
i σ

x
i+1 + hσ z

i ), (27)

where the σ x,y,z
j are the Pauli matrices acting on site j and

we consider periodic boundary conditions, σαL+1 ≡ σα1 . For
this model, the classical input is the magnetic field h ≡ x.
In the thermodynamic limit L → ∞, the model displays a
quantum phase transition at the critical value h = 1, sepa-
rating an ordered phase for |h| < 1 with twofold degener-
ate ground states from a disordered phase for |h| > 1 with
unique ground state. The model can be exactly solved via
fermionization [52]. To simplify our analysis for finite L,
here we ignore the subtleties of the different fermion par-
ity sectors by considering a small symmetry-breaking term
that forces the ground state to have even parity. In that case,
for even L, the ground state can be expressed as [53]

|$GS(h)〉 =
L/2⊗

k=1

[cos(θk,h/2)|00〉k + sin(θk,h/2)|11〉k],

(28)

where |00〉k and |11〉k are respectively the vacuum and
occupied states by two fermion pairs with opposite
momentum k, −k, and

θk,h = arccos
(

ck − h
1 + h2 − 2hck

)
, ck = cos

2πk
L

.

(29)

From the above expression, it is trivial to compute
the overlap f (h, h′) = 〈$GS(h′)|$GS(h)〉 =

∏L/2
k=1 cos[(θk,h
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FIG. 7. (a) Fidelity between two ground states of the quantum
Ising model with different values of the magnetic field h for L =
100. The model displays a quantum phase transition at the critical
value h = 1, separating ordered (|h| < 1) and disordered (|h| >
1) phases. (b) Testing error in quantum phase recognition as a
function of the magnetic field h. We use the fidelity classifier
with a training set of T random elements per phase. Each fidelity
is estimated via a SWAP test with S shots. For each h, the fidelity
is calculated 1000 times. Solid lines represent the mean fidelity,
while shaded areas are the confidence intervals within a standard
deviation.

−θk,h′)/2]. In the thermodynamic limit the fidelity induced
distance 1 − f (h, h + ε) for small ε diverges at the criti-
cal point [53]. Therefore, we may expect that the fidelity
between two states from the different phases become very
small. This is indeed shown in Fig. 7(a). Geometrically,
this means that the states belonging to different phases are
clustered in distant areas of the Hilbert space, as in Fig. 5.
However, f (h, h′) decreases exponentially in L for h )= h′,
so for large L, the matrix f (h, h′) is almost diagonal, thus
signaling bad generalization performances according to
our Eq. (21).

A scaling analysis of B as a function of L is beyond
the scope of this work. In what follows we test our the-
oretical predictions for a fixed chain length L = 100. In
this case, we consider a uniform distribution P(h) over
[0, 2] and compute B from Eq. (21)—where x there is the
magnetic field h. More specifically, we have discretized
the interval such that Eq. (21) can be computed from
the numerical eigenvalues, and we have observed that the
result converges to B * 5.9 for 100 discretization points.
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F[ρ(x), ρ(y)] is large whenever x and y belong to the same
class and small otherwise.

V. APPLICATIONS

In this section we study two different applications of our
theoretical results. The first one deals with “quantum data,”
where the parametric quantum states ρ(x) are fixed by the
problem. The second one focuses on the classification of
classical data, where the quantum embedding x !→ ρ(x)
can be optimized. In this latter case, we propose the varia-
tional quantum information bottleneck (VQIB) method for
optimizing embeddings in order to favor generalization.

A. Quantum phase recognition
In quantum phase recognition [9] the task is to rec-

ognize the phases of matter of a quantum many-body
system, by taking measurements on the quantum device
itself, without having access to a classical description of
its state. Here we focus on a paradigmatic exactly solv-
able model of quantum statistical mechanics, namely the
one-dimensional transverse-field Ising model [52]

H = −
L∑

i=1

(σ x
i σ

x
i+1 + hσ z

i ), (27)

where the σ x,y,z
j are the Pauli matrices acting on site j and

we consider periodic boundary conditions, σαL+1 ≡ σα1 . For
this model, the classical input is the magnetic field h ≡ x.
In the thermodynamic limit L → ∞, the model displays a
quantum phase transition at the critical value h = 1, sepa-
rating an ordered phase for |h| < 1 with twofold degener-
ate ground states from a disordered phase for |h| > 1 with
unique ground state. The model can be exactly solved via
fermionization [52]. To simplify our analysis for finite L,
here we ignore the subtleties of the different fermion par-
ity sectors by considering a small symmetry-breaking term
that forces the ground state to have even parity. In that case,
for even L, the ground state can be expressed as [53]

|$GS(h)〉 =
L/2⊗

k=1

[cos(θk,h/2)|00〉k + sin(θk,h/2)|11〉k],

(28)

where |00〉k and |11〉k are respectively the vacuum and
occupied states by two fermion pairs with opposite
momentum k, −k, and

θk,h = arccos
(

ck − h
1 + h2 − 2hck

)
, ck = cos

2πk
L

.

(29)

From the above expression, it is trivial to compute
the overlap f (h, h′) = 〈$GS(h′)|$GS(h)〉 =

∏L/2
k=1 cos[(θk,h
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FIG. 7. (a) Fidelity between two ground states of the quantum
Ising model with different values of the magnetic field h for L =
100. The model displays a quantum phase transition at the critical
value h = 1, separating ordered (|h| < 1) and disordered (|h| >
1) phases. (b) Testing error in quantum phase recognition as a
function of the magnetic field h. We use the fidelity classifier
with a training set of T random elements per phase. Each fidelity
is estimated via a SWAP test with S shots. For each h, the fidelity
is calculated 1000 times. Solid lines represent the mean fidelity,
while shaded areas are the confidence intervals within a standard
deviation.

−θk,h′)/2]. In the thermodynamic limit the fidelity induced
distance 1 − f (h, h + ε) for small ε diverges at the criti-
cal point [53]. Therefore, we may expect that the fidelity
between two states from the different phases become very
small. This is indeed shown in Fig. 7(a). Geometrically,
this means that the states belonging to different phases are
clustered in distant areas of the Hilbert space, as in Fig. 5.
However, f (h, h′) decreases exponentially in L for h )= h′,
so for large L, the matrix f (h, h′) is almost diagonal, thus
signaling bad generalization performances according to
our Eq. (21).

A scaling analysis of B as a function of L is beyond
the scope of this work. In what follows we test our the-
oretical predictions for a fixed chain length L = 100. In
this case, we consider a uniform distribution P(h) over
[0, 2] and compute B from Eq. (21)—where x there is the
magnetic field h. More specifically, we have discretized
the interval such that Eq. (21) can be computed from
the numerical eigenvalues, and we have observed that the
result converges to B * 5.9 for 100 discretization points.
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Task: recognize the phases of matter of a 
quantum many-body system by taking 
measurements on the quantum system itself

Ordered ￼  / disordered ￼  phases ( |h | < 1) ( |h | > 1)

T : number of training samples per class


S : number of measurement shots

⟹ ℬ ≃ 5.9

L BANCHI, J PEREIRA, S PIRANDOLA

PRX QUANTUM 2, 040321 (2021)



QUANTUM KERNELS
For pure state embeddings ￼  we find 


￼ 


where ￼ is a (normalised) kernel matrix. This makes the 
calculation ￼  easier for large-dimensional embeddings. 


Quantum kernels are used in 


‣ Quantum support vector machines 


‣ Quantum enhanced-feature space


Take home message:  avoid  ￼ 


                                              (bad generalisation)

ρ(x) = |ψ(x)⟩⟨ψ(x) |

ℬ = [Tr K]
2

Kxy = p(x)p(y) |⟨ψ(x) |ψ(y)⟩ |
ℬ

K ∝ identity

L BANCHI, J PEREIRA, S PIRANDOLA
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CONCLUDING REMARKS



CONCLUSIONS

▸ Quantum and Classical Algorithms to process either classical data (e.g. images) 
or quantum information encoded in quantum states


▸ Different applications: 


▸ quantum pattern recognition with entanglement-enhanced quantum 
sensor


▸ Classification of quantum states and phases of matter


▸ Quantum embeddings of classical data


▸ Foundational aspects: generalisation & sample complexity, information 
theoretic tools
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QUANTUM GANS FOR NOISE SENSING                              ….

▸ SuperQGANs: Quantum Generative Adversarial 
Networks for learning Superoperators

Quantum Noise Sensing by generating Fake Noise

Paolo Braccia,1, 2, 3 Leonardo Banchi,1, 2 and Filippo Caruso1, 3, 4
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Noisy-Intermediate-Scale-Quantum (NISQ) devices are nowadays starting to become available to
the final user, hence potentially allowing to show the quantum speedups predicted by the quantum
information theory. However, before implementing any quantum algorithm, it is crucial to have at
least a partial or possibly full knowledge on the type and amount of noise a↵ecting the quantum
machine. Here, by generalizing quantum generative adversarial learning from quantum states (Q-
GANs) to quantum operations/superoperators/channels (here named as SuperQGANs), we propose
a very promising framework to characterize noise in a realistic quantum device, even in the case of
spatially and temporally correlated noise (memory channels) a↵ecting quantum circuits. The key
idea is to learn about the noise by mimicking it in a way that one cannot distinguish between the
real (to be sensed) and the fake (generated) one. We find that, when applied to the benchmarking
case of Pauli channels, the SuperQGAN protocol is able to learn the associated error rates even
in the case of spatially and temporally correlated noise. Moreover, we also show how to employ it
for quantum metrology applications. We believe our SuperQGANs pave the way for new hybrid
quantum-classical machine learning protocols for a better characterization and control of the current
and future unavoidably noisy quantum devices.

I. INTRODUCTION

The quest for a fully-operational, fault-tolerant quan-
tum computer is still in its infancy. Running powerful,
and possibly world-changing, quantum algorithms such
as Shor’s one [1] will still take some time, as a huge
number of operative qubits is needed to implement error-
correcting codes [2], which are very much needed because
of the sensitivity to noise for almost all quantum proto-
cols.
However, these years are nonetheless exciting for quan-
tum computing, as they belong to the NISQ (Noisy Inter-
mediate Scale Quantum) era [3]. Indeed, quantum pro-
cessors of up to fifty qubits are actually available, and
even though they are noisy and small, we can use them
to look for proofs of principle of the coveted quantum

supremacy [4], driven by the observation that classical
devices already are not able to simulate these processors.
Besides the impossibility of running error-correcting pro-
tocols on such devices, due to their limited size, their
e↵ectiveness in delivering reliable quantum algorithms is
doomed by the unavoidable interaction of the quantum
system, realizing the computational register of qubits,
with the external environment. This will probably be the
biggest experimental challenge we will have to overcome
in order to move on to the quantum era of computation.
These unwanted couplings, on top of limiting the depth
of the quantum circuits that can be reliably devised, may
also induce back-flows of information from the environ-
ment to the computing system, leading to the observation
of memory e↵ects when repeatedly using a given quan-
tum gate. Characterizing the noise occurring on NISQ
processors is then of great importance, as it can lead to
devise tailored circuital schemes that can minimize er-
ror rates, or even exploit noisy processes to achieve the
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FIG. 1. Pictorial representation of a SuperQGAN, where
the Discriminator needs to distinguish a real noisy quantum
circuit from a fake one created by the Generator. These two
agents play against each other, in particular the Generator
needs to generate better and better data such that the task
of the Discriminator becomes more and more complicated.
The game ends (convergence) when the generator learns to
create the real noisy quantum circuit (i.e., fake=real), hence
identifying the errors occurring in the real circuit (crosses)
running on a NISQ device.

desired goal – see for instance Refs. [5–7].
In recent years, machine learning (ML) has overtaken

the computational world, providing many powerful tools
to tackle very complex tasks as domotic systems, au-
tonomous cars, face/voice recognition, and medical di-
agnostics. It did not take long to realize that ML can
be beneficial also to quantum computation, and many
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quantum adaptation of famous ML algorithms have been
studied and discussed [8–11]. As a matter of fact, a whole
new branch of quantum computation, dubbed quantum
machine learning (QML) [12, 13], has risen, exploiting
the good behaviour of hybrid quantum-classical compu-
tational schemes to look for possible quantum advan-
tages in ML tasks [14] and also to solve genuinely quan-
tum problems [13]. Moreover, machine learning methods
have also been employed to learn quantum noise [15, 16].
Among the plethora of QML algorithms, quantum gen-
erative adversarial networks (QGANs) have shown great
promise in generative tasks [17–19], thanks to their abil-
ity to learn the properties of the quantum states they are
faced with.

In this work we show how to generalize the QGAN
architecture from the context of quantum states to the
context of quantum maps (or superoperators). In other
words, the real data is represented by a real noisy quan-
tum map while the generator creates quantum maps
mimicking the real (unknown) one. We call them as Su-
perQGANs.

The paper is outlined as follows. In Sec. II we intro-
duce the mathematical definition of SuperQGANs and
discuss their general setup. Then, in Sec. III we first
review the theory of Random Unitary Maps (IIIA) and
later test our method against Pauli channels with spa-
tial (III B) and temporal (III C) noise correlations. The
Section ends with an application of the SuperQGAN to
a quantum metrology problem (IIID). Conclusions and
outlooks are drawn in Sec. IV.

II. DEFINITION OF SUPERQGANS FOR
QUANTUM MAPS

When dealing with experimental quantum processors,
the circuital paradigm of perfect quantum computation
remains an ideal abstraction. Indeed, the simple opera-
tions one would like to compose in order to build the de-
sired algorithm are not perfect unitary evolutions of the
targeted systems. Rather, they also induce unwanted,
but also unavoidable, couplings with the environment
leading, for example, to decoherence and loss of quan-
tumness. It is thus more appropriate to address the phys-
ical processes occurring in a NISQ processor with the
most general formalism of quantum operations or quan-

tum maps [2, 20]. This means that rather than associat-
ing a quantum circuit, or any of the gates constituting it,
with a unitary U mapping the input state as | i ! U | i,
we have to represent it as a general CPTP map �. The
latter is a completely positive (CP) and trace-preserving
(TP) linear super-operator acting on the space of density
operators of the input system � : ⇢! �(⇢). Notice that,
when the input and output spaces are the same, they are
also called as quantum channels. When a single qubit
map is independently applied (in parallel) to n qubits,
then the global quantum map reads as �⌦n. When this
map is applied n times (in series) to the same qubit, we
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FIG. 2. General detection scheme for spatially correlated
(a) and temporally correlated (b) noise. Noise couples the
system qubits S with the environmental qubits E. We use
the same diagram to display both the real noise �(n)

R and

the generated fake noise �(n)
F , though these may physically

correspond to di↵erent evolutions – e.g. real interaction with
an environment vs. a quantum circuit. The discriminator has
access to auxiliary qubits A and a measurement qubit M.
Based on the measurement outcome on M, the map �(n) is
judged either real or fake. For spatially correlated noise (a),
the generator applies an initialization map DI on S+A and
a measurement map DM on S+A+M, finally measuring M.
For temporally correlated noise (b), the discriminator applies
the general map D that probes the system S at intermediate
times, finally measuring M. In both cases, the discriminator
has no access to the environmental qubits E.

will write it as �n = � � · · · � �. In both cases, it is as-
sumed that the noisy operations are uncorrelated: there
are no spatial or temporal noise correlations.
However, in a NISQ device neighboring qubits typically

experience spatially correlated noise, and the later-time
evolution may display (non-Markovian) memory e↵ects,
hence leading to temporal noise correlations. As depicted
in Fig. 2, both these cases can be represented by the ac-
tion of the map �(n) that is much more general than ei-
ther �⌦n or �n. For spatially correlated noise, �(n) maps
n-qubit states to n-qubit states, while for temporally cor-
related noise �(n) maps a single qubit to a “history” of
single qubit states ⇢t, with t = 1, . . . , n, each representing
the state of the system at time t – see Fig. 2.
A recent development of QML is the formalization

of Quantum Generative Adversarial Networks (QGANs)
[17, 18], i.e. a generative model for quantum data. Mim-
icking the classical GAN scheme [21], QGANs work by
exploiting an adversarial game where a Generator (G)
agent, able to produce tunable fake instances of some
target (real) distribution of data, is opposed to a Dis-
criminator (D) that is in turn able to find good strate-

Favourable 
Scaling 

7

FIG. 6. SuperQGAN learning a two-uses temporally corre-
lated Pauli channel. Top panel shows training figures of merit
(left), and gradients (right). Bottom one compares target and
learnt distributions, as described in Fig. 3. The target distri-
bution is generated using a random single-use prior, using the
correlation law (6) with µ = 0.5.

FIG. 7. Total number of turns needed to achieve averaged
fidelity greater than threshold value of 0.999 between target
and generated channels. Each dot correspond to the mean
over 10 runs of the modified SuperQGAN whose generator
knows the correlation model of Eq. (6) and the n = 1 proba-
bilities p. Although the sample size is small, we observe that
the number of iterations to achieve convergence does not in-
crease with the number n of channel uses, hence supporting
the successful feasibility of our protocol for larger n.

D. Quantum metrology

Quantum metrology [43] can be rephrased as a
SuperQGAN with �-like probability distribution in
Eq. (2), i.e. p(s) = �(s � s̄). In other terms, we
have a mapping implementing a unitary evolution ⇢ !
U(s̄)⇢U(s̄)† and the metrology task is to estimate s̄. Ef-
ficient quantum algorithms that fully exploit quantum
e↵ects to maximize the estimation precision typically em-
ploy either adaptive strategies or parallel applications of
the unitary channel U(s̄)⌦n on an entangled state. Simi-
lar strategies are also needed when the parameter s to be
estimated is not fixed, but rather distributed according
to some probability p(s).
In particular, here we consider a paradigmatic model

of quantum metrology, i.e. the Mach-Zehnder-type in-
terferometer, whose unitary evolution can be written as

U(s) =

✓
1 0
0 e2⇡is

◆
. (8)

We assume that we can exactly express the parameter
s by using m-bits as s =

Pm
j=1 sj/2

j , where 0  s < 1
and sj 2 {0, 1}, i.e. s ⌘ sb = b/2m for an integer b <
2m. When this assumption is not satisfied, we may get a
reconstruction error. For instance, let us suppose to run
the phase estimation algorithm for general s using anm+
1 qubit register. If sb is the best m-bit approximation of
s, then the algorithm will output b0 6= b with probability
pr(b0|b) = |2�m(1� e2

mi�)/(1� ei�)|2, where � = 2⇡(s�
sb � sb0) [2]. The distribution pr(b0|b) is peaked around
b0 = b or around b0 = b ± 1 when 2ms is close to two
di↵erent integers, so the reconstruction error is small and
mostly limited to nearby values. In our analysis, we fix m
and consider the error due to the finite m as an imperfect
reconstruction of p(s).
The number n of independent applications of U(s)

needed to reconstruct s with m-bit precision increases
with m [44]. To simplify our treatment, here we assume
that m is fixed, so p(s) becomes a discrete distribution
with 2m entries, and we consider n parallel applications
of U(s). As a result, we get the following random unitary
channel

�(n)
R (⇢) =

2m�1X

b=0

p(sb)U(sb)
⌦n⇢U(sb)

⌦n†, (9)

where sb = b/2m as above and b is an integer. The
CJ state of each unitary channel U(s) is a tensor prod-
uct of a maximally entangled pure state |�si⌦n, with
|�si = (|00i+22⇡is|11i)/

p
2. To check for their linear in-

dependence, we may focus on the Gram matrix with the
Hilbert-Schmidt product, Gst = Tr[�⌦n

s �⌦n
t ] = |G̃st|2,

where �s = |�sih�s| and G̃st = h�s|�tin. The Gram
matrix has zero determinant, and hence at least a zero
eigenvalue, when the matrices �⌦n

s are linearly depen-
dent. The matrix G̃ can be diagonalized via a dis-
crete Fourier transform, obtaining the eigenvalues g̃k =

P Braccia, L Banchi, F Caruso, 
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▸ Good embeddings should maximise ￼  
and minimise ￼ 


▸ Spoiler: Information Bottleneck!


▸ Two extreme cases:

I(C:Q)
I2(X:Q)

RBayes
R(⇧⇤, ⇢)

R(⇧T , ⇢)

A(⇢)

GT (⇢)

Average testing error

Classification error
⇡ Training error

Embedding complexity

E
rr
or

￼       ￼ 
𝒢 ∝
2I2(X:Q)

T
𝒜 ≤ K −

2I(C:Q)

NC

 BASIS ENCODING: ￼ 

     MINIMUM ￼ ,    MAXIMUM  ￼  

x ↦ ρ(x) = |x⟩⟨x |
𝒜(ρ) = 0 𝒢𝒯(ρ)

 CONSTANT EMBEDDING : ￼ 

     MAXIMUM ￼ ,    MINIMUM  ￼  

x ↦ ρ
𝒜(ρ) 𝒢𝒯(ρ) = 0

for MNIST with 8-bit colours


￼  qubits!28 × 28 × 8 ≈ 6000


