Evaluation quantum gradient through quantum non-demolition measurements

Paolo Solinas

Department of Physics and INFN

Collaboration

- Simone Caletti, Dept. Physics, Univ. Genova and INFN
- Giovanni Minuto, Dept. Informatics, Univ. Genova
- Ernesto De Vito, Dept. Mathematics, Univ. Genova
- Alessandro Verri, Dept. Informatics, Univ. Genova

Variational problem

- Find the minimum of a function $\hat{H}(\vec{\theta}) \quad \vec{\theta}=$ parameter vector
- We know that for any state

$$
\langle H(\vec{\theta})\rangle=\langle\psi| \hat{H}(\vec{\theta})|\psi\rangle \geq E_{g} \quad E_{g}=\text { minimum energy }
$$

- For a generic operator we define a cost function that is the associated to its average value

$$
f(\boldsymbol{\theta})=\langle\psi(\boldsymbol{\theta})| \hat{M}|\psi(\boldsymbol{\theta})\rangle=\langle 0| U^{\dagger}(\boldsymbol{\theta}) \hat{M} U(\boldsymbol{\theta})|0\rangle
$$

Variational problem

$$
f(\boldsymbol{\theta})=\langle\psi(\boldsymbol{\theta})| \hat{M}|\psi(\boldsymbol{\theta})\rangle=\langle 0| U^{\dagger}(\boldsymbol{\theta}) \hat{M} U(\boldsymbol{\theta})|0\rangle
$$

- Circuit in a quantum computer

- Cost
m measurements
$2 k \longrightarrow 2 k m$ total logical operators

Variational problem: classical

- Gradient allows us to gain more information and speed up the convergence
- It needs the first derivative of f
- The Newton optmizer uses second derivatives

Variational quantum algorithm

- For the quantum case the first derivative can be obtained as

$$
g_{j}(\boldsymbol{\theta})=\frac{f\left(\boldsymbol{\theta}+s \mathbf{e}_{j}\right)-f\left(\boldsymbol{\theta}-s \mathbf{e}_{j}\right)}{2 \sin (s)}
$$

- We need to estimate the f function in two points
- This means to measure twice the quantum observable
- Multiplication of preparation of the system, evolution and measurements
- For the second derivative we need four ponts

$$
\begin{align*}
g_{j_{1}, j_{2}}(\boldsymbol{\theta})= & {\left[f\left(\boldsymbol{\theta}+s\left(\mathbf{e}_{j_{1}}+\mathbf{e}_{j_{2}}\right)\right)-f\left(\boldsymbol{\theta}+s\left(-\mathbf{e}_{j_{1}}+\mathbf{e}_{j_{2}}\right)\right)\right.} \\
& \left.-f\left(\boldsymbol{\theta}+s\left(\mathbf{e}_{j_{1}}-\mathbf{e}_{j_{2}}\right)\right)+f\left(\boldsymbol{\theta}-s\left(\mathbf{e}_{j_{1}}+\mathbf{e}_{j_{2}}\right)\right)\right] \\
& \times[2 \sin (s)]^{-2} . \tag{11}
\end{align*}
$$

Mari et al. Phys. Rev. A, 103, 012405 (2021)

Hybrid quantum-classical algorithms

- The two average values are used by a classical computer to update $\boldsymbol{\theta}$ (hybrid architecture)

$$
\boldsymbol{\theta}^{t+1}=\boldsymbol{\theta}^{t}-\eta \nabla f\left(\boldsymbol{\theta}^{t}\right) \quad \text { - Gradient update }
$$

Hybrid quantum-classical algorithms

- Cost
$2 m$ measurements
$4 k \longrightarrow 4 k m$ total logical operators
- For large quantum system the cost is too high
- Any cost reduction is of crucial importance

Alternative extraction of information

- Using a quantum detector, we can have direct information about the gradient if f
- We store this information in the phase which is eventually measured a single time

Alternative extraction of information

- If we want to measurement the gradient of M, we couple the system and the detector twice with $e^{i \lambda \hat{p} \otimes \hat{M}}$
$\lambda=$ coupling parameter
$\hat{p}=$ detector operator

$$
U_{\text {tot }}=e^{i \lambda \hat{p} \otimes \hat{M}} U_{2} e^{-i \lambda \hat{p} \otimes \hat{M}} U_{1}
$$

Alternative extraction of information

- Quantum circuit

Alternative extraction of information

- It can be shown that the phase of the detector is a characteristic function for the gradient
- The moments can be obtained from its derivatives

First derivative

$$
\begin{aligned}
-\left.i \partial_{\lambda} \mathcal{G}_{\lambda}\right|_{\lambda=0} & \propto \operatorname{Tr}_{S}\left[U_{1}^{\dagger} U_{2}^{\dagger} \hat{M} U_{2} U_{1} \rho_{S}^{0}-U_{1}^{\dagger} \hat{M} U_{1}^{\dagger} \rho_{S}^{0}\right] \\
& =\underbrace{f\left(\boldsymbol{\theta}+s \mathbf{e}_{j_{1}}\right)-f\left(\boldsymbol{\theta}-s \mathbf{e}_{j_{1}}\right)}_{\text {Gradient }}
\end{aligned}
$$

Notes

- λ can be taken small
- Close to $\lambda=0$ we need only one evaluation of the phase

Advantages

- We perform only a measurement on detector instead of two
- We reduce the number of repetition and the logical gate to evolve the system

	qubits	iterations	gates
Direct measurement	n	$2 m$	$\approx 4 m k$
quantum non-demolition	$n+1$	m	$\approx m k$

$m=$ number of repetitions
$k=$ number of logical operations

Advantages

- For the higher derivatives, the advantage is exponential because we perform a single measurement against an exponential number of measurements

	qubits	iterations	gates
Direct measurement	n	$4 m$	$\approx 8 m k$
quantum non-demolition	$n+1$	m	$\approx m k$

$m=$ number of repetitions
$k=$ number of logical operations

Advantages

- For complex operators we must perform additional measurements of the single terms

m measurements

	qubit	iterations	gates
Direct measurement	n	$2 m J$	$\approx 4 m J k)$
quantum non-demolition	$n+1$	m	$\approx(k+2 J) m$

$m=$ number of repetitions
$k=$ number of logical operations

Summary

- We have shown that using a quantum detector the number of operations and repetitions to estimate a quantum gradient can be reduced
- The advantages increase for the higher derivatives and complex operators
- Possible uses for variational quantum algorithms
- Implementation in noisy quantum computers where the cost reduction is of paramount importance

Thank you

