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Variational problem

A -

Find the minimum of a function H () 0 = parameter vector

 We know that for any state

— A —

(H(0)) = (|H(O)|y) > E, E,=minimum energy

« For a generic operator we define a cost function that is the
associated to its average value

1(8) = (v (8)[M14(8)) = (0]U(6)MU(6)[0)
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Variational problem

1(8) = (v (8)[M|4(8)) = (0]UT(6)MU(6)[0)

Circuit in a quantum computer

q

q>

q;

4n

Cost

M measurements

2k — 2km total logical operators
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Variational problem: classical

C N

Initial state — Minimal energy
> f(0y)

0o

Update parameters

015—{—1 _ Ht o an(Ht)

« Gradient allows us to gain more information and speed up the convergence
* It needs the first derivative of f
« The Newton optmizer uses second derivatives
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Variational quantum algorithm

For the quantum case the first derivative can be obtained as

f(0+se;j)— f(0— se;)
2 sin(s)

gj(0) =

« We need to estimate the f function in two points
« This means to measure twice the quantum observable
« Multiplication of preparation of the system, evolution and measurements

« For the second derivative we need four ponts
812 @) = [f(0+s(ej +e;)) = f(0+5(—ej +e;))
—f(0+s(ej, —e;)) + (0 —s(ej +e))]
x [2sin(s)] . (11)

Mari et al. Phys. Rev. A, 103, 012405 (2021)
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Hybrid quantum-classical algorithms

q; ] d_ \

q; N d_

K U(0 + se;) M U8 + se;) d_ — [(0 + se;)
qx — [

« The two average values are used by a classical computer to

update @ (hybrid architecture)

' =6' —nVf(O®) - Gradient update
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Hybrid quantum-classical algorithms

q;

q>
q;

dn

e (Cost

U(H + sej)

2m measurements

Ut (0 =+ se))

— f(H 4 sej)

4k — 4km total logical operators

«  For large quantum system the cost is too high

«  Any cost reduction is of crucial importance
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Alternative extraction of information

« Using a quantum detector, we can have direct information

about the gradient if f

« We store this information in the phase which is eventually

measured a single time

coupling
—O

Quantum
Detector
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Alternative extraction of information

« If we want to measurement the gradient of M, we couple the

system and the detector twice with e MPOM

A = coupling parameter

p = detector operator

First Secopd
coupling System coupling
- | evolution | -
: : .,
67;)\13®M pINPOM time

Utot — ellp@MUze—ll[D@MUl
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Alternative extraction of information

e« Quantum circuit

qi

q>
q;

e~ ApM iApM

4n
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Alternative extraction of information

« It can be shown that the phase of the detector is a

characteristic function for the gradient

« The moments can be obtained from its derivatives

First derivative

_iaAgA| x  Trs[UTUIMULUL 0% — UTNIUT 02

A=0
:@) — f(0 — sey,)
Notes

« Acan be taken small
« Close to 4=0 we need only one evaluation of the phase

Gradient
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Advantages

« We perform only a measurement on detector instead of two

« We reduce the number of repetition and the logical gate to

evolve the system

qubits | iterations gates|
Direct measurement n 2m @ Amk
quantum non-demolition | n + 1 m ~ mk

m = number of repetitions

k = number of logical operations
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Advantages

« For the higher derivatives, the advantage is exponential

because we perform a single measurement against an

exponential number of measurements

qubits | iterations
Direct measurement n 4m @ 8mk
quantum non-demolition | n + 1 m ~ mk

m = number of repetitions

k = number of logical operations
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Advantages

« For complex operators we must perform additional

measurements of the single terms

H = —|—]’L2P2—|—h3P3—|— ..... +hJPJ
m measurements
qubit | iterations gates
Direct measurement n 2mJ % AmJk >
quantum non-demolition | n + 1 m ~ (k+2Hm

m = number of repetitions

k = number of logical operations
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Summary

« We have shown that using a quantum detector the number of
operations and repetitions to estimate a quantum gradient can be

reduced

« The advantages increase for the higher derivatives and complex

operators
« Possible uses for variational quantum algorithms

« Implementation in noisy quantum computers where the cost

reduction is of paramount importance
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Thank you
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