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• For a generic operator we define a cost function that is the 
associated to its average value 

• Find the minimum of a function

Variational problem
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• We know that for any state 
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• Gradient allows us to gain more information and speed up the convergence
• It needs the first derivative of f
• The Newton optmizer uses second derivatives 

Initial state

Update parameters 

1 General Results

hH(✓)i = h |Ĥ(✓)| i � Eg
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• For the quantum case  the first derivative can be obtained as
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is studied. In Sec. V the implementation of second-order op-
timizers is considered within the context of parameter-shift
rules. Section VI focuses on investigating our findings in sim-
ulation and on hardware. We first give practical examples of
gradient and Hessian estimation and then we use these quanti-
ties to minimize the expectation value of a simple variational
circuit.1

II. SETTING

Most algorithms designed for near-term quantum com-
puters are based on the variational optimization of quantum
circuits [1–6]. A variational quantum circuit acting on n qubits
is a sequence of gates depending on a set of classical param-
eters θ = (θ1, θ2, . . . , θm) and producing a family of unitary
operations U (θ). Typically, the circuit is applied to a fixed
reference state |0〉 and the expectation value of a Hermitian
observable M is measured:

f (θ) = 〈0|U (θ)†MU (θ)|0〉. (1)

The expectation value given in Eq. (1) (or some cost func-
tion which depends on it) is usually optimized with respect
to the parameters θ. For example, if M is the Hamiltonian
of a system, we can approximate the ground-state energy by
minimizing f (θ). Many optimization methods require one to
estimate the gradient at each iteration. For more advanced op-
timizers (e.g., Newton’s method), one also needs the Hessian
matrix or higher-order derivatives.

In this work we are interested in evaluating derivatives of
an arbitrary order d , which we can cast as a tensor with d
indices j1, j2, . . . , jd whose elements are the real quantities

g j1, j2,..., jd (θ) = ∂d f (θ)
∂θ j1∂θ j2 · · · ∂θ jd

, (2)

where the gradient and the Hessian correspond to the par-
ticular cases with d = 1 and d = 2, respectively. A typical
structure of many variational circuits which can be executed
by near-term quantum computers is

U (θ) = VmUm(θm) · · ·V2U2(θ )V1U1(θ1), (3)

where Vj are constant arbitrary circuits, while Uj (θ j ) are rota-
tionlike gates, i.e., characterized by a generator Hj such that
H2

j = 1 (involutory matrix) and so

Uj (θ j ) = e−(i/2)Hjθ j = cos(θ j/2)1 − i sin(θ j/2)Hj . (4)

For example, all single-qubit rotations belong to this class.
More generally, Hj can be any multiqubit tensor product of
Pauli matrices.

Note that this class can be extended to general gates. A
possible method is to decompose a gate into a product of
rotationlike gates [18]. Another approach is to decompose an
arbitrary generator Hj into a linear combination of Pauli oper-
ators and then evaluating derivatives with respect to each term
using the stochastic method recently proposed in Ref. [19].

1Source code for the numerics and experiments in this paper is
available from [21].

III. PARAMETER-SHIFT RULES

The class of variational quantum circuits specified by
Eqs. (3) and (4) are commonly used and there exists a simple
parameter-shift rule to evaluate their gradients [10–13]. This
rule provides the gradient analytically by evaluating the circuit
with fixed shifts of π/2 in the parameters θ. We begin this
section by showing how the established gradient rule can be
generalized to arbitrary parameter shifts and then extend our
findings to higher-order derivatives such as the Hessian and
Fubini-Study metric tensor.

A. First-order derivatives: The gradient

From the previous identity, the unitary conjugation of an
arbitrary operator K̂ by Uj (θ j ) can always be reduced to the
sum of three terms

K̂ (θ j ) = Uj (θ j )†K̂Uj (θ j ) = Â + B̂ cos(θ j ) + Ĉ sin(θ j ), (5)

where Â, B̂, and Ĉ are operators independent of θ j and involv-
ing only K̂ and Ĥj . Moreover, from the standard trigonometric
addition and subtraction identities, we can deduce that

d cos(x)
dx

= cos(x + s) − cos(x − s)
2 sin(s)

, (6)

d sin(x)
dx

= sin(x + s) − sin(x − s)
2 sin(s)

, (7)

which are valid for any s $= kπ , k ∈ Z. Differentiating both
sides of Eq. (5) and using Eqs. (6) and (7), we obtain a
parameter-shift rule which is valid at the operator level:

∂

∂θ j
K̂ (θ j ) = K̂ (θ j + s) − K̂ (θ j − s)

2 sin(s)
. (8)

Note that, even if the preceding expression looks like a finite-
difference approximation, it is actually exact and we can use
it to analytically estimate the gradient of expectation values
whenever the rotationlike property of Eq. (4) holds. Indeed,
the operator identity in Eq. (8) can be directly applied into
Eq. (1) to evaluate the jth component of the gradient. The
result is a family of parameter-shift rules

g j (θ) = f (θ + se j ) − f (θ − se j )
2 sin(s)

, (9)

where e j is the unit vector along the θ j axis.
Note that, in the limit s → 0, sin(s) can be approximated

by s and we recover the central-difference approximation for
the first derivative. On the other hand, for s = π/2 we obtain
the parameter-shift rule already studied in [10–13] and used in
quantum software libraries [22–26]. It is important to remark
that the formula in Eq. (9) is exact for any choice of s. Strictly
speaking, s cannot be a multiple of π because of the diverging
denominator; however, all the corresponding discontinuities
are removable.

B. Second-order derivatives: The Hessian

A useful property of Eq. (9) is that it can be iterated to get
higher-order derivatives. Applying the same rule twice, we get

012405-2

• We need to estimate the f function in two points
• This means to measure twice the quantum observable
• Multiplication of preparation of the system, evolution and measurements
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a similar formula for the Hessian,

g j1, j2 (θ) =
[

f
(
θ + s1e j1 + s2e j2

)
− f

(
θ − s1e j1 + s2e j2

)

− f
(
θ + s1e j1 − s2e j2

)
+ f

(
θ − s1e j1 − s2e j2

)]

× [4 sin(s1) sin(s2)]−1, (10)

which, for s1 = s2 = s, simplifies to

g j1, j2 (θ) =
[

f
(
θ + s

(
e j1 + e j2

))
− f

(
θ + s

(
− e j1 + e j2

))

− f
(
θ + s

(
e j1 − e j2

))
+ f

(
θ − s

(
e j1 + e j2

))]

× [2 sin(s)]−2. (11)

Also in this case, for s → 0, we get the standard central-
difference formula for the Hessian. For s = π/2, we get an
analytic parameter-shift rule which is similar to the gradient
formula used in Refs. [10–13], but extended to the Hessian.
A formula equivalent to Eq. (11) for the particular case s =
π/2 was recently used in Refs. [17,27]. Particular attention
should be paid to the diagonal of the Hessian since for each
element two shifts are applied to the same parameter θ j . In this
case, two alternative choices for the value of s which appears
in Eq. (11) are particularly relevant. For the choice s = π/2
we get

g j, j (θ) = [ f (θ + πe j ) − f (θ)]/2, (12)

where we used that f (θ + πe j ) = f (θ − πe j ). Instead, for
s = π/4, we obtain

g j, j (θ) = [ f (θ + e jπ/2) − 2 f (θ) + f (θ − e jπ/2)]/2. (13)

Each of the two preceding formulas has alternative advan-
tages. The advantage of Eq. (12) is that it involves only two
expectation values and so it is more direct with respect to
Eq. (13), which is instead a linear combination of three terms.
On the other hand, the parameter shifts involved in Eq. (13)
are only ±π/2. This implies that all the elements of the full
Hessian matrix can be evaluated using only the same type of
±π/2 shifts and this fact could be an experimentally relevant
simplification. Moreover, in the typical scenario in which one
has already evaluated the gradient using the m pairs of shifts
f (θ ± π/2e j ), Eq. (13) allows us to evaluate the diagonal of
the Hessian with the extra cost of just a single expectation
value, i.e., f (θ). In Sec. V we show how this fact can be
conveniently exploited to replace the vanilla gradient descent
optimizer with a diagonal approximation of the Newton opti-
mizer, with negligible computational overhead.

C. Fubini-Study metric tensor

A second-order tensor which plays an important role in
quantum information theory is the Fubini-Study metric tensor
which for a pure variational state |ψ (θ)〉 can be expressed as

Fj1, j2 (θ) = −1
2

∂2

∂θ j1∂θ j2
|〈ψ (θ′)|ψ (θ)〉|2

∣∣∣∣
θ ′=θ

(14)

and corresponds to the real part of the quantum geometric ten-
sor (see, e.g., Appendix A1 of [28] for a detailed derivation).
For pure states and up to constant factors, Eq. (14) can also
be associated with other tensors such as the quantum Fisher
information matrix or the Bures metric tensor [15]. Since in

this work we only deal with pure states, we often refer to
Eq. (14) simply as the metric tensor.

Different from the Hessian, the metric tensor is not linked
to a particular observable M but is instead a geometric prop-
erty of a variational quantum state, which in our setting is
simply |ψ (θ)〉 = U (θ)|0〉. This tensor plays a crucial role in
the implementation of the quantum natural gradient optimizer
[28] and in the variational quantum simulation of imaginary-
time evolution [29].

Now we can make a useful observation: the metric tensor
in Eq. (14) can actually be seen (up to a constant factor) as the
Hessian of the expectation value f (θ) defined in Eq. (1), for
the particular observable M(θ′) = U (θ′)|0〉〈0|U (θ′). There-
fore, all the previous theoretical machinery that we have
derived for the Hessian applies also to the metric tensor and
we get the corresponding parameter-shift rule which is simply
the same as Eq. (11), where each expectation value is

f (θ) = |〈ψ (θ′)|ψ (θ)〉|2. (15)

The quantity |〈ψ (θ′)|ψ (θ)〉|2 is the survival probability of
the state |0〉 after the application of the circuit U (θ′)U (θ). This
probability can be easily estimated with near-term quantum
computers either with a SWAP test or more simply as the
probability of obtaining the 00 . . . 0 bit string after measuring
the state U (θ′)U (θ)|0〉 in the computational basis.

Substituting Eq. (15) into Eq. (11) and setting s = π/2 and
θ ′ = θ , we get the explicit parameter-shift rule for the metric
tensor:

Fj1, j2 (θ) = − 1
8

[∣∣〈ψ (θ)|ψ
(
θ +

(
e j1 + e j2

)
π/2

)〉∣∣2

−
∣∣〈ψ (θ)|ψ

(
θ +

(
e j1 − e j2

)
π/2

)〉∣∣2

−
∣∣〈ψ (θ)|ψ

(
θ +

(
− e j1 + e j2

)
π/2

)〉∣∣2

+
∣∣〈ψ (θ)|ψ

(
θ −

(
e j1 + e j2

)
π/2

)〉∣∣2]
. (16)

As we discussed for the Hessian, also in this case the formula
for the diagonal elements can be simplified in two alternative
ways. The first formula, corresponding to Eq. (12), is

Fj, j (θ) = 1
4 [1 − |〈ψ (θ)|ψ (θ + πe j )〉|2]. (17)

The second equivalent formula, corresponding to Eq. (13), is

Fj, j (θ) = 1
2 [1 − |〈ψ (θ)|ψ (θ + e jπ/2)〉|2], (18)

where we used that |〈ψ (θ)|ψ (θ + e jπ/2)〉|2 = |〈ψ (θ)|ψ (θ −
e jπ/2)〉|2. We also comment that an efficient method for eval-
uating diagonal blocks of the metric tensor was proposed in
[28]. Moreover, an experimentally feasible methodology for
measuring the metric tensor was proposed in [13].

D. Arbitrary-order derivatives

The same iterative approach can be used to evaluate deriva-
tives of arbitrary order. In this case, for simplicity, we set
s = π/2 and we introduce the multiparameter shift vectors

k± j1,± j2,...,± jd = π

2

(
± e j1 ± e j2 ± · · · ± e jd

)
, (19)

where j1, j2, . . . , jd are the same d indices which appear
also in the derivative tensor defined in Eq. (2). These vectors

012405-3
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hH(✓)i = h |Ĥ(✓)| i � Eg

Eg = minimum energy

✓ = parameter vector

✓t
�! ✓t+1

✓t+1 = ✓t
� ⌘rf(✓t)

✓t+1 = ✓t
� ⌘[Hf(✓t)]�1

rf(✓t)

f(✓1)

f(✓2)

✓0

✓f

f(✓f ) (1)

[�(T � t)� �(t1)]�p̂⌦ M̂.

p̂ = detector operator

� = couplingparameter

e
i�p̂⌦M̂

m = number of repetitions

k+ = number of logical operations

J = number of separate measurements

U(✓)

U
†(✓)

U(✓ ± sej)

U
†(✓ ± sej)

(2)

m measurements

2k �! 2km total logical operators

2m measurements

4k �! 4km total logical operators

f(✓ ± sej)

(3)

�i@�G�

���
�=0

/ TrS [U
†
1U

†
2M̂U2U1⇢

0
S � U

†
1M̂U

†
1⇢

0
S ]

= f(✓ + sej1)� f(✓ � sej1) (4)

1

• The two average values are used by a classical computer to 

update 𝛉 (hybrid architecture)

1 General Results

hH(✓)i = h |Ĥ(✓)| i � Eg
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hH(✓)i = h |Ĥ(✓)| i � Eg

Eg = minimum energy

✓ = parameter vector

✓t
�! ✓t+1

✓t+1 = ✓t
� ⌘rf(✓t)

✓t+1 = ✓t
� ⌘[Hf(✓t)]�1

rf(✓t)

f(✓1)

f(✓2)

✓0

✓f

f(✓f ) (1)

[�(T � t)� �(t1)]�p̂⌦ M̂.

p̂ = detector operator

� = couplingparameter

e
i�p̂⌦M̂

m = number of repetitions

k+ = number of logical operations

J = number of separate measurements

U(✓)

U
†(✓)

(2)

m measurements

2k �! 2km total logical operators

2m measurements

4k �! 4km total logical operators

(3)

�i@�G�

���
�=0

/ TrS [U
†
1U

†
2M̂U2U1⇢

0
S � U

†
1M̂U

†
1⇢

0
S ]

= f(✓ + sej1)� f(✓ � sej1) (4)

1

• For large quantum system the cost is too high

• Any cost reduction is of crucial importance

q1
q2
q3

qn

1 General Results

H

e
�i�pM

e
i�pM

U(✓ � s)

U(✓ + s)

...

1

1 General Results

H

e
�i�pM

e
i�pM

U(✓ � s)

U(✓ + s)

U
†(✓ � s)

U
†(✓ + s)

...

U1

U2

M

(1)

1

1 General Results

H

e
�i�pM

e
i�pM

U(✓ � s)

U(✓ + s)

...

1

1 General Results

hH(✓)i = h |Ĥ(✓)| i � Eg
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• Using a quantum detector, we can have direct information 

about the gradient if f

• We store this information in the phase which is eventually 

measured a single time

Alternative extraction of information
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Quantum 
Detector 

System
coupling



• If we want to measurement the gradient of M, we couple the 

system and the detector twice with

Alternative extraction of information
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First
coupling

time

Second
coupling
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System 
evolution

2

supposing that Hj is a generator of a single qubit operation
such that H

2
j
= 1,

Uj(~q j) = e
�iHjq j/2 = cos

q j

2
1� isin

q j

2
Hj. (2)

The quantity we are interested in is the average value of an
operator M̂ over the final state |y(~q)i [6]

f (~q) = hy(~q)|M̂|y(~q)i = h0|U†(~q)M̂U(~q)|0i. (3)

Measuring this quantity for two points, we can estimate the
derivative of f (~q) as [6]

g j1 =
∂ f (~q)

∂q j1

=
f (~q + se j1)� f (~q � se j1)

2sins
. (4)

where e j1 is the versor along the q j1 direction. This methods
can be generalized to calculate the second derivative (see Eq.
(10) in [6])

g j1, j2 =
∂ 2

f (~q)

∂q j1∂q j2
= (5)

=
h

f (~q + s(e j1 + e j2))� f (~q + s(�e j1 + e j2))

+ f (~q + s(e j1 � e j2))+ f (~q � s(e j1 + e j2))
ih

2sin2
s

i�1
.

or even higher derivatives defined as [6]

g j1, j2,..., jd
=

∂ d
f (~q)

∂q j1∂q j2 ...∂q jd

. (6)

The information about the derivatives of f can used to min-
imise a cost function. To this aim, different optimizer algo-
rithms can be used (see, fro example, [6]). The most common
one is the gradient descent (GD). This optimiser starts with
the parameter ~q (0) which are sequentially updated to new val-
ues ~q (1), ~q (2), ..., ~q (T ). The update of parameters is obtained
by the rule ~q (t) = ~q (t�1) �h— f (~q (t�1)) where h > 0.

The access to the second derivatives allows us to imple-
ment other optimisation algorithm. For example, in the New-
ton optimizer, the parameter update rule is ~q (t) = ~q (t�1) �
h [H f (~q (t�1))]�1— f (~q (t�1)) where [H f (~q (t�1))]�1 is the in-
verse of the Hessian matrix estimated using Eq. (6).

Since the Newton optimizer require the inversion of the
Hessian matrix, it might be resource consuming for a large
parameter space. For this reason, alternative second order ap-
proaches have been proposed such as the diagonal Newton
optimizer and quantum natural gradient optimizer [6, 18, 19].
The later uses the information encoded in the Fubini-Study
metric tensor that can be obtained with similar methods [6].

III. QUANTUM NON-DEMOLITION MEASUREMENT :
FIRST ORDER DERIVATIVE - GRADIENT

The key idea of the QNDM approach is to couple the sys-
tem to a quantum detector and store the desired informa-
tion in the phase of the detector that is eventually measured

[15, 16]. By choosing properly the system detector interac-
tion [10, 11, 17], we can store in the detector the information
of the variation of the average M so that a final measurement
gives us direct access to the gradient (4).

Notice that in terms of operators we can write Eq. (4) as
the average of a new operator U

†(~q + se j1)MU(~q + se j1) �
U

†(~q � se j1)MU(~q � se j1) = M(~q + se j1) � M(~q � se j1).
However, being this the difference between observables, it is
not an observable and it cannot be measured directly but the
contributions must be measured separately [10, 11, 14]. The
QNDM approach allows us to access the same information
about the averages with a direct measurement of the detector
phase, therefore, reducing the resources needed.

More precisely, let us consider the same set up discussed in
Sec. II but let us add an additional quantum system that acts
as the detector. We suppose that the detector has no dynamics,
i.e., it evolves over times much longer that the one needed to
perform the full protocol.

The system and the detector interact with the Hamiltonian

HI = h(t)l p̂⌦ M̂. (7)

Here, l is the coupling constant between the system and the
detector, and it can be changed and fixed at the beginning of
the evolution. The operators p̂ and M̂ act on the detector and
the system, respectively, and we denote the eigenstates of p̂

with |pi, i.e., p̂ |pi = p |pi.
The time dependent function h(t) determines when the sys-

temeq and the detector are coupled. If the full protocol occurs
between time t = 0 and t = T , we take h(t) = d (T � t)�d (t1)
where d (t) is the Dirac delta and 0 < t1 < T . By using the
Dirac delta, we model the fact that the system detector in-
teraction occurs over much smaller time scales than all the
other evolution, so that during the coupling we can consider
the system dynamics ”frozen”. Under this assumption, the
system-detector evolution is associated to the unitary evolu-
tion U± = exp{±il p̂⌦ M̂}.

In the intervals between the couplings with the detector,
the systems evolves with unitary evolution Ui so that the total
(system+detector) evolution is

Utot = e
il p̂⌦M̂

U2e
�il p̂⌦M̂

U1 (8)

where the explicit form of the Ui will be determined below.
We consider as initial state |y0i = |0i

⇣
1p
N

Â |pi
⌘

where
the sum over is over N detector states. The final state is |y f i =
Utot |y0i associated to the density operator rtot = |y f ihy f |.
The final density matrix of the detector is r f

D
= TrS[rtot ] where

TrS denotes the trace over the system degrees of freedom.
We define the quasi-characteristic function as [10, 11]

Gl =
hp̄|r f

D
|� p̄i

hp̄|r0
D
|� p̄i

. (9)

From a physical point of view, the quasi-characteristic func-
tion is the phase accumulated between the states |±pi of the
detector during the evolution [10, 11]. This can be directly
measured with interferometric techniques.
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• Quantum circuit
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• It can be shown that the phase of the detector is a 

characteristic function for the gradient 

• The moments can be obtained from its derivatives

Alternative extraction of information
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First derivative
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Gradient
Notes
• 𝛌 can be taken small
• Close to 𝛌=0 we need only one evaluation of the phase



• We perform only a measurement on detector instead of two

• We reduce the number of repetition and the logical gate to 

evolve the system

Advantages
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hH(✓)i = h |Ĥ(✓)| i � Eg

Eg = minimum energy

✓ = parameter vector

✓t
�! ✓t+1

✓t+1 = ✓t
� ⌘rf(✓t)

✓t+1 = ✓t
� ⌘[Hf(✓t)]�1

rf(✓t)

f(✓1)

f(✓2)

✓0

✓f

f(✓f ) (1)

[�(T � t)� �(t1)]�p̂⌦ M̂.

p̂ = detector operator

� = couplingparameter

e
i�p̂⌦M̂

m = number of repetitions

k = number of logical operations

J = number of separate measurements

U(✓)

U
†(✓)

U(✓ ± sej)

U
†(✓ ± sej)

(2)

m measurements

2k �! 2km total logical operators

2m measurements

4k �! 4km total logical operators

f(✓ ± sej)

(3)

�i@�G�

���
�=0

/ TrS [U
†
1U

†
2M̂U2U1⇢

0
S � U

†
1M̂U

†
1⇢

0
S ]

= f(✓ + sej1)� f(✓ � sej1) (4)

1

• For the higher derivatives, the advantage is exponential 

because we perform a single measurement against an 

exponential number of measurements

Advantages
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• For complex operators we must perform additional 

measurements of the single terms

Advantages
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qubits iterations gates
Direct measurement n 2m ⇡ 2mk+

quantum non-demolition n+ 1 m ⇡ mk+

1 General Results

hH(✓)i = h |Ĥ(✓)| i � Eg

Eg = minimum energy

✓ = parameter vector

✓t
�! ✓t+1

✓t+1 = ✓t
� ⌘rf(✓t)

✓t+1 = ✓t
� ⌘[Hf(✓t)]�1

rf(✓t)

f(✓1)

f(✓2)

✓0

✓f

f(✓f ) (1)

[�(T � t)� �(t1)]�p̂⌦ M̂.

p̂ = detector operator

� = couplingparameter

e
i�p̂⌦M̂

m = number of repetitions

k+ = number of logical operations

J = number of separate measurements

(2)
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/ TrS [U
†
1U

†
2M̂U2U1⇢

0
S � U

†
1M̂U

†
1⇢

0
S ]

= f(✓ + sej1)� f(✓ � sej1) (3)

H = h1P1 + h2P2 + h3P3 + .....+ hJPJ (4)

1

m measurements
qubit iterations gates

Direct measurement n 2mJ ⇡ 4mJk

quantum non-demolition n+ 1 m ⇡ (k + 2J)m

3

1 General Results

hH(✓)i = h |Ĥ(✓)| i � Eg

Eg = minimum energy

✓ = parameter vector

✓t
�! ✓t+1

✓t+1 = ✓t
� ⌘rf(✓t)

✓t+1 = ✓t
� ⌘[Hf(✓t)]�1

rf(✓t)

f(✓1)

f(✓2)

✓0

✓f

f(✓f ) (1)

[�(T � t)� �(t1)]�p̂⌦ M̂.

p̂ = detector operator

� = couplingparameter

e
i�p̂⌦M̂

m = number of repetitions

k = number of logical operations

J = number of separate measurements

U(✓)

U
†(✓)

U(✓ ± sej)

U
†(✓ ± sej)

(2)

m measurements

2k �! 2km total logical operators

2m measurements

4k �! 4km total logical operators

f(✓ ± sej)

(3)

�i@�G�

���
�=0

/ TrS [U
†
1U

†
2M̂U2U1⇢

0
S � U

†
1M̂U

†
1⇢

0
S ]

= f(✓ + sej1)� f(✓ � sej1) (4)

1



Summary
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• We have shown that using a quantum detector the number of 

operations and repetitions to estimate a quantum gradient can be 

reduced

• The advantages increase for the higher derivatives and complex 

operators

• Possible uses for variational quantum algorithms

• Implementation in noisy quantum computers where the cost 

reduction is of paramount importance



Thank you
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