

TRAPPED-ION QUANTUM COMPUTING FOR COLLECTIVE NEUTRINO OSCILLATIONS

Valentina Amitrano

Francesco Pederiva Alessandro Roggero Francesco Turro Piero Luchi Luca Vespucci

Bologna, 14-15 November 2022

Trento Institute for Fundamental Physics and Applications

Quantum Computing @INFN Workshop

OUTLINE

Introduction

- Motivation
- Physical description of the many-neutrino system in high density environment

QC simulation

- Hamiltonian simulation
- The quantum algorithm implementation

Valentina Amitrano

Bologna, 14-15 November 2022 Quantum Computing @INFN workshop

Results

 Data from the real trapped-ion quantum machine:
 Quantinuum System Model

WHY WE CARE ABOUT NEUTRINOS

Core-collapse supernovae

Neutrinos are **messengers of** information of physics under extreme conditions

Massive star mergers

Nucleosynthesis and in general weak interaction is **flavor**dependent

 $\nu_e + n \longleftrightarrow p + e^$ $n \longleftrightarrow p + e^- + \overline{\nu}_e$ $\overline{\nu}_e + p \longleftrightarrow n + e^+$

Spectral splits can

happen at some distance from the emission sphere

NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE

- Massive stars $M \ge 8 M_{\odot}$ explode releasing a huge \bigcirc amount of energy and neutrinos ~ 10^{58}
- Flavor Hamiltonian of many-neutrino system \bigcirc

$$H = H_{vac} + H_{\nu e} + H_{\nu \nu}$$

Vacuum: Mass eigenstates \neq flavor eigenstates

MSW: Scattering with matter $\nu\nu$ -interaction: Forward scattering

In the two-flavor approximation the flavor state of a neutrino is a **flavor isospin**. The Hamiltonian can be written using the SU(2) algebra thanks to Pauli matrices:

$$H = H_{vac} + H_{\nu\nu}$$

In the two-flavor approximation the flavor state of a neutrino is a **flavor isospin**. The Hamiltonian can be written using the SU(2) algebra thanks to Pauli matrices:

$$H = H_{vac} + H_{\nu\nu}$$

1-body term
$$H_{vac} = \sum_{i=1}^{N} \vec{b} \cdot \vec{\sigma}_{i} = \frac{\delta m^{2}}{4E} \sum_{i=1}^{N} \left(\sin(2\theta_{\nu})X_{i} - \cos(2\theta_{\nu})Z_{i} \right)$$

NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE

In the two-flavor approximation the flavor state of a neutrino is a **flavor isospin**. The Hamiltonian can be written using the SU(2) algebra thanks to Pauli matrices:

NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE

$$\frac{\delta m^2}{4E} \sum_{i=1}^N \left(\sin(2\theta_\nu) X_i - \cos(2\theta_\nu) Z_i \right)$$

$$\frac{i}{N} \sum_{i < j}^{N} J_{ij} \left(X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j \right)$$

In the two-flavor approximation the flavor state of a neutrino is a **flavor isospin**. The Hamiltonian can be written using the SU(2) algebra thanks to Pauli matrices:

NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE

$$\frac{\delta m^2}{4E} \sum_{i=1}^N \left(\sin(2\theta_\nu) X_i - \cos(2\theta_\nu) Z_i \right)$$

$$\frac{i}{V} \sum_{i < j}^{N} J_{ij} \left(X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j \right)$$

Simulating the full dynamics is impossible using classical resource

1° ingredient: Encoding map

2° ingredient: Implementation of the unitary $U = e^{-iHt}$

INGREDIENTS FOR HAMILTONIAN SIMULATION

- N neutrinos encoded into N qubits

• Two-flavor approximation $|\nu\rangle = \alpha |\nu_e\rangle + \beta |\nu_x\rangle$

1° ingredient: Encoding map

2° ingredient: Implementation of the unitary $U = e^{-iHt}$

INGREDIENTS FOR HAMILTONIAN SIMULATION

Valentina Amitrano

ion
$$|\nu\rangle = \alpha |\nu_e\rangle + \beta |\nu_x\rangle$$

into *N* qubits
neutrinos generated by the
 $\vec{b} \cdot \vec{\sigma}_i + \sum_{i < j} J_{ij} \vec{\sigma}_i \cdot \vec{\sigma}_j$
ator $U(t) = e^{-iHt}$
1° ingredient:
Encoding map
2° ingredient:
Implementation of the
unitary $U = e^{-iHt}$

THE THEORETICAL EVOLUTION

We want to simulate the flavor evolution

- Initial state $|\Psi_0\rangle$ 0
 - N = 4 initial state $|\Psi_0\rangle = |0011\rangle$
 - N = 8 initial state $|\Psi_0\rangle = |00001111\rangle$
- Evolved state $|\Psi(t)\rangle = e^{-iHt} |\Psi_0\rangle$ 0
- Measure the probability to be in the inverted flavor as a 0 function of time $P_{inv}(t)$
- Note the symmetry under particle exchange \bigcirc

Bologna, 14-15 November 2022 Quantum Computing @INFN workshop

THE UNITARY IMPLEMENTATION: GATE DECOMPOSITION

Valentina Amitrano

THE UNITARY IMPLEMENTATION: GATE DECOMPOSITION

Valentina Amitrano

simple
$$U_1(t) = e^{-iH_{vac}t} = e^{-i\sum_i h_i t} = \prod_i e^{-ih_i t}$$

tricky
$$U_2(t) = e^{-iH_{\nu\nu}t} = e^{-i\sum_{i < j} h_{ij}t}$$

hation
$$U_2(t) \approx \prod_{i < j} e^{-ih_{ij}t}$$

 $\alpha = -dt J_{ii}$

THE UNITARY IMPLEMENTATION: MACHINE AWARE COMPILATION

- Different qubit 0
 - Superconductive circuit
 - Trapped ions 0
- Different qubit connectivity \bigcirc
 - Linear
 - All to all
 - Etc...
- Different universal gate set \bigcirc
 - Circuit optimization
 - More control on what we are running

Honeywell Quantum

Rigetti Quantum

IBM Quantum

LLNL testbed

- The $\nu\nu$ -term is an **all-to-all interaction**: 0
 - all qubits need to interact with all the 0 others one time
- The qubit connectivity introduces constraints 0 in the quantum gate decomposition
 - Swap network algorithm for linear connectivity (B. Hall, A. Roggero et. al (2021))
 - Advantage of **full connectivity** of trapped 0 ions
 - Less complexity
 - **Error** minimization \bigcirc

THE UNITARY IMPLEMENTATION: QUBIT TOPOLOGY

Long evolution of N = 4 neutrinos using $dt = 4N \mu^{-1}$

THE UNITARY IMPLEMENTATION: MACHINE AWARE COMPILATION

Quantinuum System Model (QSM) H1-2

- Trapped-ion device 0
- Full-connected qubits 0
- High fidelity 0

•
$$\varepsilon_q \sim 10^{-4}$$

$$\varepsilon_{qq} \sim 10^{-3}$$

Machine aware implementation of the unitary propagator $U(t) = e^{-iHt}$:

- Qubit topology \bigcirc
- Quantum gate set \bigcirc
- Complexity scaling analysis \bigcirc

R_z –		
R_z –		
	_	

RESULTS: SINGLE TROTTER STEP

Short time-step $dt = 4\mu^{-1}$: small error decomposition ~ $\mathcal{O}(kdt^2)$ Ideal \approx trotterized evolution Very long quantum circuits (noise)

Steps	1	2	3	4	5	6	7	8	9	10
# ZZ	18	36	54	72	90	108	126	144	162	180
# SU(2)	36	68	100	132	164	196	228	260	292	324

We are interested in systems in which we fix $n_{\nu} = N/V$ and we look at the scaling with N

Complexity as the number of 2-qubit gates to evolve the system up to T keeping the error $< \epsilon$

- First order Trotter $\mathscr{C}_1 = \mathscr{O}\left(\frac{T^2 \mu^2 N^3}{\epsilon}\right)$
- Second order Trotter $\mathscr{C}_2 \leq \mathcal{O}\left(\frac{(T\mu)^{3/2}}{\sqrt{\epsilon}}N^{5/2}\right)$
- Higher order Trotter $~\sim N^{2+\delta}$

COMPLEXITY SCALING OF THE ALGORITHM

Real cost estimated by calculating the number of steps such that we evolve up to $T = 40 \mu^{-1}$ with an error ≤ 0.15

$$\varepsilon(dt) = \|U_{approx}(dt) - U_{exact}(dt)\|_{\infty}$$

- Flavor dynamics is crucial to describe many effects in corecollapse supernovae
- Collective neutrino oscillations \bigcirc make the problem non linear and interesting to test quantum computing

- QC necessary for full dynamics simulation
- The gate decomposition must be \bigcirc machine aware and circuit optimization is crucial
- Full qubit connectivity allows for \bigcirc more freedom in gate decomposition

Valentina Amitrano

CONCLUSIONS

- Results are very promising
- We can increase the number of simulated neutrinos
- The algorithm scales polynomially

THANK YOU FOR YOUR ATTENTION

Valentina Amitrano

Francesco Pederiva Alessandro Roggero Francesco Turro Piero Luchi Luca Vespucci

Bologna, 14-15 November 2022

Quantum Computing @INFN Workshop

SUPPLEMENTARY MATERIAL

Vacuum mixing (1-body term)

$$H_{vac} = \sum_{i=1}^{N} \vec{b} \cdot \vec{\sigma}_i = \frac{\delta m^2}{4E} \sum_{i=1}^{N} \left(\sin(2\theta_{\nu}) X_i - c \right)$$

• $\nu\nu$ - interaction (2-body term)

$$H_{\nu\nu} = \frac{\mu}{N} \sum_{i < j}^{N} J_{ij} \vec{\sigma}_i \cdot \vec{\sigma}_j = \frac{\mu}{N} \sum_{i < j}^{N} J_{ij} \left(X_i \otimes X_j + Y_i \right)$$

$$H_{\nu\nu} \text{ is an all-to-all interaction that makes the problem non-linear}$$

Valentina Amitrano

TWO-FLAVOR HAMILTONIAN MODEL

The model:

- $\theta_{\nu} = 0.195$ mixing angle
- Monochromatic flux $E \neq E_i$ 0

$$\vec{b} = \frac{\delta m^2}{4E} (\sin(2\theta_{\nu}), 0, -\cos(2\theta_{\nu}))$$

•
$$J_{ij} = 1 - \cos(\theta_{ij})$$

•
$$\theta_{ij} = \arccos(0.9) \frac{|i-j|}{N-1}$$

• Energy scale
$$\mu = \sqrt{2}G_F n_{\nu}$$

•
$$X_2 = I \otimes I \otimes X \otimes I$$

•
$$X_0 \otimes X_2 = X \otimes I \otimes X \otimes I$$

• *H* is a
$$2^N \times 2^N$$
 Hermitian matrix

THE UNITARY IMPLEMENTATION

Bologna, 14-15 November 2022 Quantum Computing @INFN workshop

THE UNITARY IMPLEMENTATION: QUBIT TOPOLOGY

$$-SU(2) + SU(2) + SU(2) + SU(2)$$
$$-SU(2) + SU(2) + SU(2) + SU(2)$$

Valentina Amitrano

Bologna, 14-15 November 2022 Quantum Computing @INFN workshop

MACHINE AWARE COMPILATION

Native gate

•
$$R_{z}(\lambda) = \begin{pmatrix} e^{-i\lambda/2} & 0\\ 0 & e^{i\lambda/2} \end{pmatrix}$$

• $U_{q}(\theta, \varphi) = \begin{pmatrix} \cos \theta/2 & -ie^{-i\varphi} \sin \theta/2\\ -ie^{i\varphi} \sin \theta/2 & \cos \theta/2 \end{pmatrix}$
• $ZZ = e^{-i\frac{\pi}{4}Z\otimes Z} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & i & 0 & 0\\ 0 & 0 & i & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$

Valentina Amitrano

First order Trotter decompos

$$\varepsilon(dt) \le \frac{dt^2}{2} \sum_{K=1}^{\Gamma} \left\| \sum_{L=K+1}^{\Gamma} [h_K, h_L] \right\|$$
$$\varepsilon(T) \le r\varepsilon(dt) \quad T = rdt$$

$$\mathscr{C} \le \binom{N}{2} r$$

Valentina Amitrano

Bologna, 14-15 November 2022 Quantum Computing @INFN workshop

TROTTER ERROR SCALING FOR THE APPROXIMATION OF $U(dt) = e^{-iHdt}$

sition
$$U(dt) \approx \mathscr{L}_1(dt) = \prod_{K=1}^{\Gamma} e^{-ih_{ij}dt}$$

$$\varepsilon(dt) \le 12dt^2\mu^2 \frac{\Theta^2}{N^2} \binom{N}{3} = \mathcal{O}\left(dt^2\mu^2N\right)$$

$$r \le 12 \frac{T^2 \mu^2 \Theta^2}{\epsilon N^2} \binom{N}{3} = \mathcal{O}\left(\frac{T^2 \mu^2 N}{\epsilon}\right)$$

$$\mathscr{C}_1 = \mathscr{O}\left(\frac{T^2 \mu^2 N^3}{\epsilon}\right)$$

Second order Trotter decomposition U

$$\begin{split} \varepsilon(dt) &\leq \frac{dt^3}{12} \sum_{K}^{\Gamma} \| \sum_{L>K}^{\Gamma} \sum_{M>K}^{\Gamma} [h_L, [h_M, h_K]] \| + \\ &+ \frac{dt^3}{24} \sum_{K}^{\Gamma} \| \sum_{L>K}^{\Gamma} [h_K, [h_K, h_L]] \| \end{split}$$

 $\varepsilon(T) \le r\varepsilon(dt)$ T = rdt

$$\mathscr{C} \le \left(2 \binom{N}{2} - \frac{N}{2} \right) r$$

Valentina Amitrano

Bologna, 14-15 November 2022 Quantum Computing @INFN workshop

TROTTER ERROR SCALING FOR THE APPROXIMATION OF $U(dt) = e^{-iHdt}$

$$\mathcal{Y}(dt) \approx \mathcal{L}_2(dt) = \mathcal{L}_1\left(\frac{dt}{2}\right) \mathcal{L}_1^{\dagger}\left(-\frac{dt}{2}\right)$$

$$\varepsilon(dt) \le dt^3 \frac{\mu^3 \Theta^3}{N^3} \left[20 \binom{N}{3} + 56 \binom{N}{4} \right] = \mathcal{O}\left(dt^3 \mu^3 N\right)$$

$$r \leq \frac{(T\mu\Theta)^{3/2}}{\sqrt{\epsilon}N^{3/2}} \sqrt{20\binom{N}{3} + 56\binom{N}{4}} = \mathcal{O}\left(\frac{T^{3/2}\mu^{3/2}\sqrt{R}}{\sqrt{\epsilon}}\right)$$
$$\mathscr{C}_2 \leq \left(2\binom{N}{2} - \frac{N}{2}\right)r = \mathcal{O}\left(\frac{(T\mu)^{3/2}}{\sqrt{\epsilon}}N^{5/2}\right)$$

- Number of repetitions M = 2000
- Bayesian approach
 - Probability distribution of obtaining *m* times $|q\rangle$:

$$\mathcal{P}_{b}(m \mid p) = {\binom{M}{m}} p^{m} (1-p)^{M-m}$$
A priori distribution: Beta distribution
$$\mathcal{B}(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

Likelihood distribution: Binomial distribution

Posterior distribution

