

Speaker: Alice Pagano

Ab-initio two-dimensional digital twin for quantum computer benchmarking

(2)

Collaboration of...

Ab-initio two-dimensional digital twin for quantum computer benchmarking

Alice Pagano

Classical simulation of QPU

Goal

➢ Gain insights on quantum hardware for QPU development

Large scale simulation to support the next decades of hardware developments

Our approach				Entanglement entropy production in
		We don't do	We do	Networks, Marco Ballarin at
	Gate:	Matrix	Pulse	4:30pm
	Qubits:	>100	>100	
	Speed:	Faster	Slower	

> Our **digital twin** can simulate different platform, e.g. Rydberg quantum computer

A lot of ingredients...

 $|0\rangle$

 $|0\rangle$

Parallel 1D case

Question

> Prepare global GHZ state

To which extent can we profit in 2d Rydberg systems from parallelization?

Hamiltonian of Rydberg QPU

 $\left|1\right\rangle = \left|5^{3}P_{2}\right\rangle$ $\left|0\right\rangle = \left|5^{3}P_{0}\right\rangle$

a

- > 2d array of Rydberg atoms trapped in optical tweezers
- Three-level system description: 0, 1, r

Sr88

$$H_{\text{Ryd}} = \sum_{j,k} \Omega_{j,k}^{x}(t) \sigma_{j,k}^{x} + \Omega_{j,k}^{z}(t) \sigma_{j,k}^{z}$$
tweezers
$$+ \sum_{j,k} \left(\Omega_{j,k}^{R}(t) \sigma_{j,k}^{+} + h.c. \right)$$

$$+ \sum_{j,k} \sum_{j',k'} V(j,k,j'k') n_{j,k} n_{j',k'}$$

Strong long-range Rydberg interaction

$$V(j,k,j',k') = \frac{-C_6}{d^6} \propto n^{11}$$

Rydberg blockade mechanism

Optimal pulses and gates

- Single-qubit gates: are implemented via Raman lasers
- Two-qubit gates: use the Rydberg interaction in the r-state to implement a CZ gate
- Protocol from Pagano et al, PRR...
 10% time speedup

Pagano et al. Phys. Rev. Research **4**, 033019

Alice Pagano

Algorithm: compiler

2. Dedicated GHZ compiler

- Set minimal distance r_g
 between CZ gates in
 parallel
- Track possibilities, consider rotations and reflections, ...

51CR 17

Translate Hadamard into native gate set

$$H = \operatorname{Rot}_{Z}\left(\frac{\pi}{2}\right)\operatorname{Rot}_{X}\left(\frac{\pi}{2}\right)\operatorname{Rot}_{Z}\left(\frac{\pi}{2}\right)$$

Translate CNOT into >10 native gates, CZ ...

ROCK

Step 16

Numerical simulation with TTN

- We solve the Schrödinger equation
- Tree Tensor Networks (TTN) run Hamiltonian evolution
- Truncation in entanglement via Schmidt decomposition
- Time evolution via time-dependent variational principle
- > Van der Waals interaction included up to $r_g + d_{offset}$

Alice Pagano

Alice Pagano

Quantify crosstalk 4x4

The fidelity F of the algorithm is the state fidelity at the end $F = |\langle \psi(\tau) | \psi_{\text{GHZ}} \rangle|^2$ I = 1 - F

- 16 qubit GHZ state can reach fidelities above 0.9999 in a closed system
- > We define the safety distance for parallel execution of CZ gate at $\sqrt{8a}$

Quantify crosstalk 8x8

- 64 qubit GHZ state can reach fidelities above 0.99 in a closed system
- ➢ We define the safety distance for parallel execution of CZ gate at 4a

Larger system sizes profit more from parallelization

< 15% overhead compared to min r_g circuit
 > 35% speedup compared to CZ-serial circuit
 > 92% speedup compared to all-serial circuit

Alice Pagano

Ab-initio two-dimensional digital twin for quantum computer benchmarking Jaschke et al. arxiv: 2210.03763

64

Triangular lattice layout

- Different qubit layout can be implemented
- An atom can have 6 nearest neighbors

> Develop digital twin of a quantum computer, e.g. Rydberg QPU

Prepare global GHZ state and study gate crosstalk

➢ For 8x8 array, parallel CZ must be four lattice spacings apart

> Then, crosstalk is negligible in comparison to other sources of error

Figures and Supplemental Material available here

figshare.com

Backup slides

Alice Pagano

Rydberg measurement 8x8

Decay from the Rydberg state is the most important source of error for a single CZ gate

$$\begin{split} H_{\rm OQS} &= H_{\rm Ryd} - {\rm i}\gamma \sum_{j,k} \left| r \right\rangle \left\langle r \right|_{j,k} \\ L_{\rm decay} &= \left| d \right\rangle \left\langle r \right| \end{split}$$

- Parallel execution of CZ gates leads to a remaining population in the Rydberg state as the gate is designed for serial use
- Remaining population quantifies the crosstalk: indicator of the fidelity of the state preparation.

Dephasing 8x8

- Fluctuations around the magic trapping condition lead to decoherence
- Fidelity between GHZ of n qubits and perfect GHZ state

$$\mathcal{F}_{\mathrm{D}}(t) = \frac{1}{2} + \frac{1}{2} \exp\left(-\frac{n \cdot t}{T_2}\right)$$

Proves the need to parallelize the circuit

Average error per layer

