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Quantum computing at LHCb
• Up to now two main activities 

in the collaboration:

• One LHCb paper published: 
“Quantum Machine Learning 
for b-jet charge at LHCb” 
JHEP08(2022)014

• A dedicated work package in 
the Data Processing & 
Analysis (DPA) project: 
https://lhcb-dpa.web.cern.ch/
lhcb-dpa/

2

• Jet identification

• Tracking

https://lhcb-dpa.web.cern.ch/lhcb-dpa/
https://lhcb-dpa.web.cern.ch/lhcb-dpa/
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Jet identification
• Jets: spray of particles produced by quark hadronization and fragmentation

• Classification problem that involves many particles/features

• LHC experiments heavily use machine learning to improve the performance on jet identification

• Many use cases at LHCb!
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Measure the 
bb̅ asymmetry

Disentangle bb̅, cc ̅and backgrounds

JHEP03(2019)166
JHEP02(2021)023
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Quantum machine learning
• Jet identification is the ideal task to test Quantum Machine Learning algorithms

• In all our studies we use the full simulation provided by the LHCb experiments: our samples 
resemble the real data

• We employ the hybrid approach: the quantum circuit with tunable parameters (Variational Quantum 
Circuit) is trained by using a classical loss function
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Quantum Circuits implemented 
with Pennylane/Qiskit 
In particular Qiskit is used for 
tests on IBM hardwares
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b-jets vs b̅-jets: features
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• We include also the jet charge:

• We take profit of the Particle Identification 
capabilities of LHCb

• For each identified type of particle (muon, 
electron, kaon, pion, proton) we select the 
one with the higher transverse momentum

• We consider three observables per particle:

• ΔR (distance in η-φ space) 
between the particle 
momentum and the jet axis

• pTrel with respect to jet axis

• Charge (+1 or -1)

Two datasets/set of features:

• Muon dataset: jets with at 
least one muon, 3 muon 
features+jet charge

• Complete dataset: all jets, 15 
particle features+jet charge

A total of 16 features are considered to 
distinguish jets produced by b and b̅ quarks
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Quantum Circuits

• Embedding + L layers of rotational gates

• Two types of embedding tested: Amplitude Embedding and Angle Embedding
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Amplitude encoder: 2n features in n qubits Angle embedding: one rotational gate per 
feature (#features=#qubits)
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Results on simulator
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Compared to a classical 
DNN, the quantum 

classifier requires less 
training events to achieve 

the same accuracy The DNN and the quantum circuits 
show similar ROC areas

Different number of rotational 
layers tested: the accuracy 
saturates after few layers

complete 
dataset

muon dataset muon dataset
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Performance on simulator
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A requirement is applied on the probability 
output to maximize the tagging power 

(combination of efficiency, εeff, and accuracy, a):

In the muon dataset, the 
DNN and the Angle 

Embedding circuit have a 
similar performance

In the complete dataset, the 
Angle Embedding shows a 

lower tagging power than the 
DNN (2% absolute difference)

muon dataset

complete datasetcomplete 
dataset
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Quantum noise

• Several noise models have been 
applied to the simulator in order to study 
its impact

• With the noise, a higher number of 
training epochs is necessary to 
achieve the best accuracy

• With a sufficiently high number of 
epochs, the accuracy obtained with 
the noise is of the same order of the 
accuracy obtained without noise
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Classification of b- vs c-jets
• For this task, features related to the 

reconstructed Secondary Vertex (SV), 
formed by particle tracks and matched with 
the jet, are used


• Most important features:


• From 4 to 13 features are used
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• SV mass


• SV corrected mass


• Fraction of jet momentum taken by the SV


• Delta R distance of SV with respect to jet axis
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Classification of b- vs c-jets
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Quantum Approximate Optimization Algorithm encoding (QAOA), 
a variational circuit for the embedding 

Several tests have 
been performed by 
varying the number of 
features (=#qubits) and 
the number of layers With the QAOA algorithm the 

performance is close to the one 
obtained with a classical BDT
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Validation on hardware
• The evaluation of the pre-trained quantum circuit for b vs c has been performed on IBM hardware

• The goal is to check if there are differences in the output between hardware and simulator

• For this task the circuit has been implemented using the Qiskit library, (angle embedding is considered)

• The probability distributions show some differences, but the discriminating power is similar
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b-jet probabilityb-jet probability
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b-jet
c-jet

ibmq_toronto

qasm_simulator

4 qubit 4 qubit

ibmq_toronto 27 qubits
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Prospects: circuit optimization
• When circuits are ported to the hardware, they look very 

different from the original design: the implementation depends 
on the qubit connections, geometry and native gates

• The optimization is done with the transpiler

• However we should try to perform an accurate circuit design to 
improve the timing performance, impact of the noise etc.
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4-qubit angle embedding circuit
Same circuit on the ibmq_toronto hardware

ibmq_toronto 27 qubits

• We are also studying the impact of noise 
mitigation techniques 
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Prospects: timing performance

• We have measured the job time on IBM 
hardware 

• The queue time should be already subtracted

• There is a dependence of the time from 
the Circuit Volume 

• However we have several questions: how 
this time is divided in quantum and 
classical operations? How much time is 
needed for data upload?

• An accurate analysis and comparison with 
simulations can help in scaling the 
performance to larger Circuit Volumes  
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Circuit depth = maximum number of gates applied to the same qubit
Circuit Volume: depth*number of effectively used qubits
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Prospects: entropy and correlations
• Quantum circuits could give us more information on data than classical machine learning, by measuring 

entanglement correlations and entropy between qubits (features)

• A proof of principle on the b vs b ̅task at LHCb has been given in (npj Quantum Inf 7, 111 (2021)), for a 
quantum-inspired method: the entropy and correlations have been used to determine a ranking of the 
features
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• Could the quantum entropy and correlation 
give us a deeper insight on data?

• Could be useful to measure these 
quantities on real data? Could they be 
used to improve our simulation?

• A more general question: do we have 
quantum data in our experiments?

The same side Kaon algorithm has been re-discovered
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Conclusions
• The LHCb collaboration is lively working on Quantum Computing algorithms
• The Jet Identification has been considered as first problem
• The Quantum Algorithms have shown a similar performance to the “classical” machine 

learning algorithms, but they are not yet able to surpass Deep Neural Networks/Boosted 
Decision Trees

•  We are working on several promising aspects:
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• Circuit optimization in the hardware, noise mitigation strategies
• Measurement of timing performance, scaling to larger Circuit Volumes
• Study Entanglement Correlations and Entropy to learn something new 

from our data
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