EIC_NET Silicon Tracker update

Giacomo Contin

Università di Trieste and INFN Sezione di Trieste

• Riunione EIC_NET – 03 October 2022

EIC Silicon Consortium activities update

- R&D funding proposals
 - FY23 Generic R&D
 - FY23 eRD104 eRD111- eRD113 Project R&D

ALICE ITS3 synergies

Silicon Consortium for the EIC

Mission and Organizational tasks:

- coordinating effort towards the EIC silicon tracker
 - ✓ supporting the EPIC Tracking Working group and the R&D activities
 - \checkmark open to all the EIC interested groups and institutions
- weekly Coordination meetings, on Monday @1pm EDT:
 - ✓ indico: <u>https://indico.bnl.gov/category/387/</u>
 - \checkmark promoting activity progress and coordinating institutional relationship
 - people: N. Apadula (LBL), G. Contin (INFN Trieste), G. Deptuch (BNL), L. Greiner (LBL),
 D. Elia (INFN Bari), L. Gonella (Birmingham), P. Jones (Birmingham), I. Sedgwick (RAL),
 E. Sichtermann (LBL)

• bi-weekly General meetings (<u>eic-rd-silicon-l@lists.bnl.gov</u>):

- ✓ indico: <u>https://indico.bnl.gov/category/386/</u>
- ✓ SC activity progress reports (including activity for projects eRD104 and eRD111 so far)
- \checkmark involving participants and presenters by the different groups
- ✓ latest meeting: September 29 (discussion of eRD proposal submissions)

Silicon Consortium actions and news

- Promoting SC institutes' participation in ITS3 activities
 - Sensor design: BNL and LBL joined RAL in actively contributing
 - Sensor characterization: test systems received by most of the interested groups
 - ORNL, LBL members hosted at INFN Trieste for training in testing
- Promoting MoU between ALICE/CERN and EIC/DOE
 - Contacts with Luciano Musa, Elke, Rolf continues to draft an agreement
 - BNL designers defining terms of agreement for sensor development
- Finding and planning resources for:
 - EIC-specific development
 - Contribution to ITS3 development
- INFN Padova joining the R&D for the EPIC Tracker!

EIC Generic R&D call FY23

- Call: "This program will support advanced R&D on innovative, cost-effective detector concepts which reduce risk and that either the one detector in the project scope or a second detector could incorporate."
- Proposal submitted on July 25 2022 by SC/Tracking WG members: "Silicon Tracking and Vertexing Consortium"
- R&D items:
 - Embedded Monolithic Active Pixel Sensor R&D
 - Additive manufacturing of power and data redistribution layers on thin large-area silicon
 - Aluminum Flexible Circuit Manufacturing Capability
 - Functional Verification Model of EIC Tracking and Vertexing Detectors R&D
 - Ultra-fast Timing Monolithic Active Pixel Sensors
- Total request: 574.2 k\$
 - INFN: ~0.4 Post-doc FTE = 34k\$, material = 15k\$

5

- Powering goals:
 - Detailed concept and analysis of powering distribution schemes based on DC-DC and SP
 - Evaluation of existing regulators and of powered MLR1 structures performance
- Readout goals:
 - Explore radiation tolerant FPGA options and high speed fiber optic transmission options with evaluation boards and interface boards
 - Develop prototype multiplexing firmware
 - Beam tests for fault testing of the devices
 - Analysis of multiplexing designs and full cost benefit report
 - Development and test of data transmission on high insertion loss cables
- Proponents: UK groups, ORNL, BNL
- Total request: 255.5 k\$

EIC Project R&D - eRD111 Silicon Tracking

Forming modules from stitched sensors

- Optimization of the 65nm stitched sensor dimensions for EPIC
- Exploration of integration options in the module
- Barrel & discs
 - Conceptual design and prototypes of the vertexing layers including supports
 - Advanced stave and disc conceptual designs and prototypes
- Mechanics, integration, & cooling
 - CAD model of silicon tracker
 - Analysis of the cooling options for the tracker
 - Conceptual designs and prototypes for the full set of detector support structures
- Proponents: UK, INFN, LANL, LBNL, ORNL
- Total request: 786.6 k\$
 - INFN: 0.25 Post-doc FTE = 20k\$, material = 10k\$

EIC Project R&D - eRD113 Sensor Dev. & Char.

- Establish credibility within the ALICE ITS3, accomplish legal, organizational and export control agreements with CERN to share design databases
- Progress in testing and characterization
 - Produce a copy of the test system now under development for the large area sensor and adapt the ancillary test equipment to the new sensor size and characteristics
 - Develop setup and procedures needed to test the stitched sensor prototypes in curved configuration
- Contribute to design of selected blocks
- Understand implications of changing stitching plans and make the plausible plan for LAS for the EIC, evaluate functionalities and circuitry for EIC
- Evaluate implications of adopting serial powering on the sensor biasing
- Proponents: UK, INFN, BNL, LBNL, ORNL, LANL
- Total request: 2,628 k\$
 - INFN: 0.25 Post-doc FTE = 20 k\$, material = 10 k\$

Progress report from ALICE ITS3

Quantitative results are from public presentations

APTS-SF: Substrate bias amplifies the signal

From <u>S. Senyukov at IWORID '22</u>

- Substrate bias lowers the node capacitance to as low as 2.2 fF
- Signal amplitude increases

APTS-SF: Charge collection vs. pixel pitch

- Charge collection efficiency doesn't seem to depend on pixel pitch
- Remarkable result to be confirmed by beam test
- If efficiency stays high at larger pitches -> way to decrease the power consumption

From S. Senyukov at IWORID '22

CE65: Process modification reduces charge sharing

İPHC (

From <u>S. Senyukov at IWORID '22</u> (

- <u>×</u>10^{−3} Entries (normalised) Chip : CE65 (MLR1) ALICE ITS3-WP3 beam test preliminary Process : std/mod_gap (split 4) @CERN-PS May 2022, 10 GeV/c π⁻ 3 $V_{sub} = V_{pwell} = 0 V$ Plotted on 21 Jun 2022 $I_{mat} = 5 \text{ mA}, I_{col} = 100 \mu \text{A}, V_{offect} = 0.4 \text{ V}$ AC amp.: HV = 10 V, $I_{pmos} = 1 \mu A$ 2.5 DC amp.: I pmos = 1 µA MPV of cluster charge SF : $I_{nmos} = 1 \,\mu A$, $V_{recet} = 3.3 \,V$ 2 Cluster window: 3×3 Seed charge > 100 e, SNR > 3 1.5 Fitting by Landau-Gaussian function —•— mod gap AC amp. — mod gap DC amp. mod gap SF std AC amp. std DC amp. 0.5 ---- std SF 500 2500 3000 1000 1500 2000 Seed charge
- Effect observed in APTS with ⁵⁵Fe sources confirmed at beam test
- In modified process all charge is mostly collected by single pixel

Irradiated DPTS (10¹⁵ n_{eq})

From <u>S. Senyukov at IWORID '22</u> ÍPHC 🛞 Efficient at 20 °C with limited fake hit rate

EIC

NET

2022-10-03

DPTS: Spatial resolution \sim 5 μ m

From <u>S. Senyukov at IWORID '22</u>

DPTS: Temporal resolution ~7 ns

From <u>S. Senyukov at IWORID '22</u>

15

ITS3 progress report: ER1 stitched sensor

From <u>P. Leitao at TWEPP '22</u>

ALICE

EIC

NET

ITS3 progress report: ER1 MOSS Prototype

- 1.4 x 26 cm monolithic stitched sensor
- Binary readout with parameterizable strobe duration
- In-pixel latch with fast OR for column and row signals
- Analog and digital pulse testing per pixel
- 736.3 Million transistors
- 1.67 Million pixels

- 11 mW/cm2 (analog FE)
- 1us peaking time

From P. Leitao at TWEPP '22

ITS3 progress report: bending 65nm chips

From D. Colella – AUW 9/22

ITS3 progress report: bending 65nm chips

Chip-cylinder alignment jig

Starting assembly in September with dummy chips

Carrier jig being adapted to

telescope setup

From D. Colella – AUW 9/22

ITS3 progress report: integration

MAPS foil: new measurements looking for breaking point

Super-ALPIDE: starting the assembly of first functional sample

➡ITS3 FPC: design and simulation ongoing

From D. Colella – AUW 9/22

- EIC Silicon Consortium pursuing tracker development for EPIC
 - Proposals submitted for Generic and Project R&D Programs for FY23
 - INFN Padova joins Bari and Trieste for FY23
- EIC SC participation in ITS3 is crucial
 - Test system received by several groups, training is ongoing
 - Active participation in sensor design by BNL, LBL, RAL
 - Working on DOE/CERN, EIC/ALICE, SC/ITS3 agreements

