

The dRICH Project

The dual-radiator RICH has been a common reference in the forward region since EIC Yellow Report Moving from generic EIC R&D (eRD14) to targeted EIC R&D (eRD102, eRD110, eRD...)

	p/A beam	e beam	
p: 41 GeV, 100 to 275 GeV			e: 5 GeV to 18 GeV

Contalbrigo Marco - INFN Ferrara

Dual Radiator RICH @ EIC

Detector: 0.5 m²/sector , 3x3 mm² pixel. \rightarrow SiPM option

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c

Targeted R&D eRD102

Prototipe to validate dual-radiator working principle, study compatibility with B field and streaming readout, optimize performance and define specifications for components

FY23 proposal Just submitted

RICH2022

- 0

XI INTERNATIONAL WORKSHOP ON

RING IMAGING CHERENKOV DETECTORS

DEDICATED TO THE MEMORY OF JACQUES SEGUINOT

EDINBURGH, UK

12 - 16 SEPTEMBER 2022

Co-winner of the early career poster prize

Simone Vallarino INFN Ferrara The dual Ring Imaging Cherenkov detector

for the Electron-Ion Collider

https://indico.cern.ch/e/rich2022 rich2022@ph.ed.ac.uk

Sponsored by

dRICH Prototype

Test beam @ PPE158 - SPS

September 2022

Refined alignment tools and procedure

Beam information: time and Cherenkov tagging

Time Analysis

dRICH Gas

Scan the mirror position to align the focal plane on the sensor surface

Two radiators with 180 hadron beam with reference readout

dRICH Prototype

Test at 50 GeV mixed hadron beam with tagging by beam instrumentation (3x gas Cherenkov)

dRICH Aerogel

Chromatic dispersion measured prototype with optical filters

dRICH Aerogel

Compare single tile and stack of tiles (from Aerogel Factory)

Goals:

- Compare surfaces of same tile (only exit surface matters)
- Compare refractive index and photon yield among different tiles
- Check tile stack performance

Next Steps: Aerogel

Existing facility to study detailed radiator optical properties and alternatives

Aerogel:

Safe handling and characterization (refractive index, surface planarity, forward scattering)

Interplay between radiators:

UV filters, refractive index optimization

INFN 2023: Funds for new samples

Aerogel Factory: negotiate production of large

goals: study reproducibility 1st batch: 1.0206, 1.0206, 1.0199, 1.0204 2nd batch: 1.0201, 1.0207, 1.0210, 1.0218

negotiate large (20x20 cm²) tiles with ALICE

ASPEN: initial contacts with CUA (Tanja Horn)

goal: obtain few samples at 1.02

dRICH Simulations

Chandra @ RICH 2022

ECCE simulation

ATHENA simulation

dRICH simulation model was adapted to ATHENA and ECCE

Full simulation chain now implemented into EPIC

Inputs for a realistic model are becoming available from prototype

INFN 2023: funds for a CFRP mirror demonstrator

INFN 2032: funds for a composite material study (targeted to over-pressure case) Contacts with BNL and JLab for engineering support

Study solutions for single-photon detection within strong B-field

SiPM program: selection among various candidates R&D dark count mitigation

INFN 2023: sensors, instrumentation, electronics, FBK R&D local support at SA, CS, MS

LAPPD program

Test & guide developments @ Incom

INFN 2023: rent, instrumentation

SiPM Test Station

Current measurements

- climatic chamber low-temperature operation all reported measurements at T = -30 °C
- **2x 40-channel multiplexers** automatic measurement of 2x SiPM boards (64 channels)
- source meter

DCR measurements

- climatic chamber low-temperature operation all reported measurements at T = -30 °C
- 2x ALCOR-based front-end chain automatic measurement of 2x SiPM boards (64 channels)
- FPGA (Xilinx) readout

Roberto @ RICH2022

440130

100.0000 µA

S13360-3050VS

bias voltage (V)

bias voltage (V)

PK S13360-3025V9

SiPM + ALCOR Light Response

Pulsed LED providing a relative PDE measurement

- compare different sensors
- compare before and after irradiation and annealing
- awaiting ALCORv2

Roberto @ RICH2022

Incontro Nazionale EIC_NET - 3th October 2022

Compare sensor response to irradiation + annealing. S13360-3050VS most promising for the moment.

DCR after irradiation and annealing

Roberto @ RICH2022

Realistic study of sensor life with irradiation and annealing cycles

Roberto @ RICH2022

test reproducibility of repeated irradiation-annealing cycles

simulate a realistic experimental situation

- consistent irradiation damage
 - DCR increases by ~ 500 kHz (@ Vover = 4)
 - after each shot of 10⁹ n_{eq}
- consistent residual damage
 - ~ 15 kHz (@ Vover = 4) of residual DCR
 - builds up after each irradiation-annealing

annealing cures same fraction of newly-produced damage

~ 97% for HPK S13360-3050 sensors

SiPM In-Situ Operations

Study solutions for rapid and repeated annealing Preparing for beam test (12-19 October 2022)

explore solutions for in-situ annealing

- total fluence of 10⁹ n_{eq}
 - delivered in 5 chunks
 - each of 2 10⁸ n_{eq}
- interleave by annealing
 - forward bias, ~ 1 W / sensor
 - T = 175 °C, thermal camera
 - o 30 minutes
- preliminary tests
 - o Hamamatsu S13360-3050

LAPDDs

Measured dark rate: 140 Hz/m² at room temperature

voltages: 2160 V, 2150 V, 1275 V, 1075 V, 200 V PC = -10V, MCP = 875 V, Transfer gap = 200 V;

Preparing single-photon response characterization

M. Contalbrigo

LAPDDs @ INFN

Test-beam 5-19 October 2022 CERN PS line T10

- LAPPD photodetector
- Quartz lens to produce Cherenkov light
- Fast beam monitor MCP and SiPM

Goal: Single photon time resolution

dRICH project aims to address crucial PID aspects at EIC

cost-effective compact solution for hadron PID in the forward region in a wide kinematic range

investigation of novel single-photon detector solution to be operated in high magnetic field

The dual-radiator RICH has been a **common reference** in the forward region since EIC Yellow Report

Moving from generic EIC R&D (eRD14) to targeted EIC R&D (eRD102, eRD110, eRD109,)

INFN leading an international effort

Quite broad program (optics, sensors, electronics, mechanics, cooling,)

Many opportunities for contributions at the cutting edge of detector technology