
# SiPM sensors for irradiation campaign 2023

EIC\_NET elettronica

# **New LIGHT SiPM carriers**

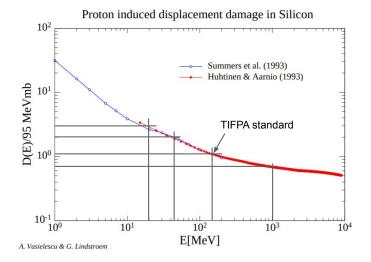


#### 1x4 LIGHT carrier

- keep same boards designed in 2020
- o populate 2 / 3 rows
  - 4 sensors / row
- sensors from Hamamatsu
  - 4x S13360-3050
  - **4**x S14160-3050
  - 4x S13360-3075 (perhaps)
- perform different type of irradiation/annealing studies
  - one LIGHT carrier for each study
- keep a minimal statistical sample for each study
  - 4 sensors / type

## Irradiation studies

### with protons at different energies


- test NIEL scaling hypothesis of radiation damage with energy
- test annealing cure has same effectiveness
- 2 or possibly three energies
  - 150 MeV, 40 MeV, 20 MeV
  - would be nice also 1 GeV

#### with reactor neutrons

- test NIEL scaling hypothesis and annealing effectiveness is same as for protons
- central reactor flux has both fast and slow neutron component
  - possibly different damage
  - irradiate in central reactor channel
    - both fast and slow
  - irradiate in peripheral channel
    - fast component suppressed

#### at different levels of fluence

- o 10<sup>9</sup>, 10<sup>10</sup>, 10<sup>11</sup> neq in one shot
- 10<sup>9</sup> repeated irradiation/annealing cycles



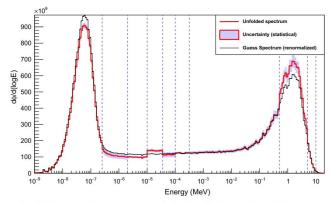
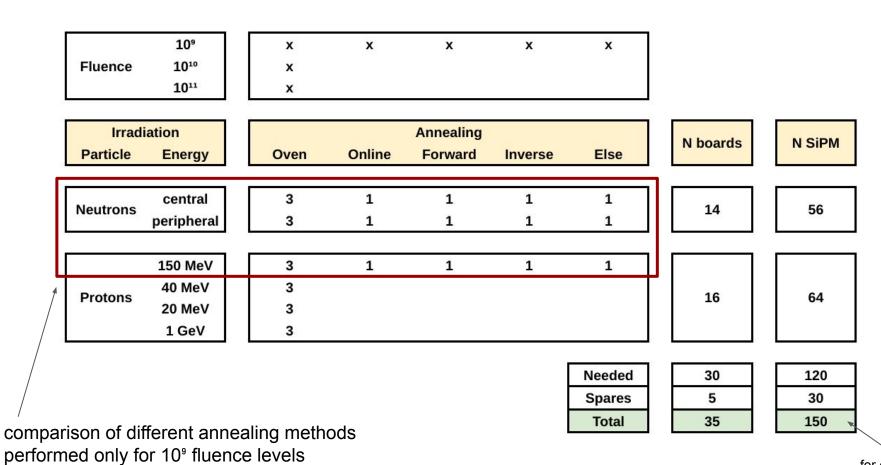



Fig. 12 Unfolded neutron flux spectrum in Central Channel at 100 kW power (same plot description as Fig. 10)


# Boards and sensors needed

|             |                                            |      | 1               |                  |         |        |           |        |
|-------------|--------------------------------------------|------|-----------------|------------------|---------|--------|-----------|--------|
| Fluence     | 10°                                        | x    | x               | x                | x       | ×      |           |        |
|             | 10¹º                                       | x    |                 |                  |         |        |           |        |
|             | 1011                                       | х    |                 |                  |         |        |           |        |
| Irradiation |                                            |      | Annealing       |                  |         |        | N. haavda | N CiDM |
| Particle    | Energy                                     | Oven | Online          | Forward          | Inverse | Else   | N boards  | N SiPM |
|             | 48                                         |      |                 |                  |         |        |           |        |
| Neutrons    | central                                    | 3    | 1               | 1                | 1       | 1      | 14        | 56     |
|             | peripheral                                 | 3    | 1               | 1                | 1       | 1      |           |        |
| Protons     | 150 MeV                                    | 3    | 1               | 1                | 1       | 1      |           |        |
|             | 40 MeV                                     | 3    | - <del></del> - | <del>7-</del> 0- | 150     |        |           |        |
|             | 20 MeV                                     | 3    |                 |                  |         |        | 16        | 64     |
|             | 1 GeV                                      | 3    |                 |                  |         | ×      |           |        |
|             |                                            |      | J               |                  |         |        |           |        |
|             | 1                                          |      |                 |                  |         | Needed | 30        | 120    |
|             |                                            |      |                 |                  |         | Spares | 5         | 30     |
| ioon ooro   | son across different radiation field types |      |                 |                  |         |        | 35        | 150    |

comparison across different radiation field types performed for three levels of fluence

for each type

## Boards and sensors needed



for each type

# Summary

- 35 SiPM carrier LIGHT boards
  - one board for each irradiation / annealing study
  - mount on same board different sensor types
    - 4 sensors / type
- 150 SiPM sensors for each type
  - S13360-3050VS (25 EUR + IVA / sensor = 4.5 kEUR)
    - the workhorse and baseline
  - S13360-3075VS (assume same price as 3050 = 4.5 kEUR)
    - small SPADs do not help with DCR
    - larger SPADs will give higher PDE
  - S14160-3050HS (20 EUR + IVA / sensor = 3.7 kEUR)
    - not as good but higher PDE
    - cheaper
- Total cost for sensors = 13 kEUR
  - more than the assigned 10 kEUR
    - cut a bit the program
      - 3 sensors / type instead of 4 = 8.5 kEUR
      - buy 75 S13350-3075 instead of 150 = 10 kEUR
      - buy 75 S14160-3050 instead of 150 = 11 kEUR
    - spend more money