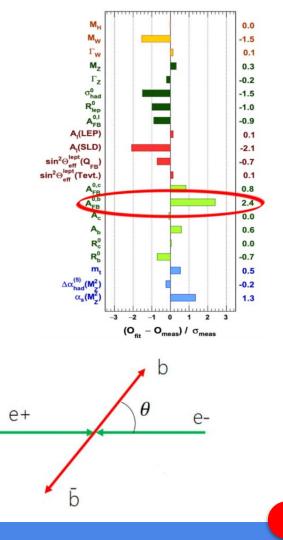






# Update of A<sup>b</sup><sub>FB</sub> @FCC-ee

Marina Cobal, Giancarlo Panizzo, Hamzeh Khanpour, Giovanni Guerrieri, Leonardo Toffolin, Michele Pinamonti (Udine-ICTP) 12 October 2022


### Introduction

- The goal:
  - precise measurement of **forward-backward asymmetry** of  $b\overline{b}$  in  $e^+e^- \rightarrow Z \rightarrow b\overline{b}$  events
  - **>2σ deviation** btw. LEP combination and EW fits
  - ideal **benchmark** measurement for FCC-ee  $@m_7$

$$\frac{d\sigma_{b\bar{b}}}{d\cos\theta_b} = \sigma_{b\bar{b}} \frac{3}{8} \left( 1 + \cos^2\theta_b + \frac{8}{3}A^b_{\rm FB}\cos\theta_b \right)$$

#### • The measurement:

- $A^{b}_{FB}$  can be extracted from **cos\theta(b)** distribution
- $\circ$  experimental distinction between *b* and  $\overline{b}$  needed
  - $\Rightarrow$  quark **charge** determination



### **b-quark charge determination**

• Two classes of **methods**:

#### 1. Jet charge:

- charge of jet obtained as weighted **sum** of charges of constituent **tracks**
- can be applied to all jets  $\Rightarrow$  maximal efficiency
- relatively low purity
- strong dependence on jet shape and hadronization

#### 2. Soft lepton tagging:

- charge of *b* inferred from charge of e or *µ* in *B***-hadron semileptonic decay**
- relatively low efficiency (restricted to semileptonic decays)
- better purity
- highly sensitive to *B*-hadron decay modelling

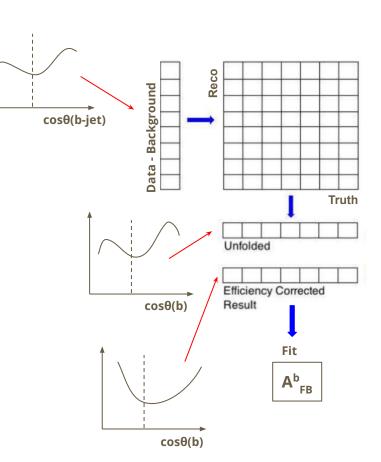
### **LEP** measurements

| Measurement:         | $(A_{_{\rm FB}}^{0,b}) \pm \delta({ m stat}) \pm \delta({ m syst})$                                                                                                                          | relative uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Experiment           |                                                                                                                                                                                              | stat.                                                                                                                                                                                                                                                                                                                                                                                                                                                | QCD syst.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | total syst.                                            |
| Lepton-charge based: |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| ALEPH (2002)         | $0.1003 \pm 0.0038 \pm 0.0017$                                                                                                                                                               | 3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7%                                                   |
| DELPHI (2004–05)     | $0.1025 \pm 0.0051 \pm 0.0024$                                                                                                                                                               | 5.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3%                                                   |
| L3 (1992–99)         | $0.1001 \pm 0.0060 \pm 0.0035$                                                                                                                                                               | 6.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5%                                                   |
| OPAL (2003)          | $0.0977 \pm 0.0038 \pm 0.0018$                                                                                                                                                               | 3.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8%                                                   |
| Jet-charge based:    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| ALEPH (2001)         | $0.1010 \pm 0.0025 \pm 0.0012$                                                                                                                                                               | 2.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2%                                                   |
| DELPHI (2005)        | $0.0978 \pm 0.0030 \pm 0.0015$                                                                                                                                                               | 3.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5%                                                   |
| L3 (1998)            | $0.0948 \pm 0.0101 \pm 0.0056$                                                                                                                                                               | 10.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.9%                                                   |
| OPAL (1997,2002)     | $0.0994 \pm 0.0034 \pm 0.0018$                                                                                                                                                               | 3.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8%                                                   |
| Combination          | $0.0992 \pm 0.0015 \pm 0.0007$                                                                                                                                                               | 1.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7%                                                   |
|                      | Experiment<br>Lepton-charge based:<br>ALEPH (2002)<br>DELPHI (2004–05)<br>L3 (1992–99)<br>OPAL (2003)<br>Jet-charge based:<br>ALEPH (2001)<br>DELPHI (2005)<br>L3 (1998)<br>OPAL (1997,2002) | ExperimentLepton-charge based:ALEPH (2002) $0.1003 \pm 0.0038 \pm 0.0017$ DELPHI (2004-05) $0.1025 \pm 0.0051 \pm 0.0024$ L3 (1992-99) $0.1001 \pm 0.0060 \pm 0.0035$ OPAL (2003) $0.0977 \pm 0.0038 \pm 0.0018$ Jet-charge based: $0.1010 \pm 0.0025 \pm 0.0012$ DELPHI (2001) $0.1010 \pm 0.0025 \pm 0.0012$ DELPHI (2005) $0.0978 \pm 0.0030 \pm 0.0015$ L3 (1998) $0.0948 \pm 0.0101 \pm 0.0056$ OPAL (1997,2002) $0.0994 \pm 0.0034 \pm 0.0018$ | Experimentstat.Lepton-charge based: $0.1003 \pm 0.0038 \pm 0.0017$ $3.8\%$ ALEPH (2002) $0.1003 \pm 0.0038 \pm 0.0017$ $3.8\%$ DELPHI (2004-05) $0.1025 \pm 0.0051 \pm 0.0024$ $5.0\%$ L3 (1992-99) $0.1001 \pm 0.0060 \pm 0.0035$ $6.0\%$ OPAL (2003) $0.0977 \pm 0.0038 \pm 0.0018$ $3.9\%$ Jet-charge based: $ALEPH$ (2001) $0.1010 \pm 0.0025 \pm 0.0012$ $2.5\%$ DELPHI (2005) $0.0978 \pm 0.0030 \pm 0.0015$ $3.1\%$ L3 (1998) $0.0948 \pm 0.0101 \pm 0.0056$ $10.6\%$ OPAL (1997,2002) $0.0994 \pm 0.0034 \pm 0.0018$ $3.4\%$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

stat syst

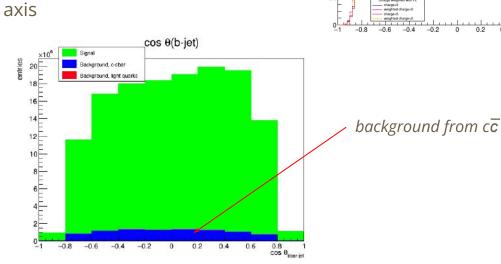
### **Effort and tools**

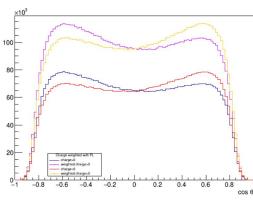
#### • Person-power:


- Master thesis student (*Leonardo, starting PhD in November*)
- Dedicated post-doc (Hamzeh)
- part-time 2<sup>nd</sup> year PhD student (*Giovanni*)
- Supervision and help by seniors (*Marina, Giancarlo, Michele*)

#### • Analysis framework:

- using both central FCC software and stand-alone Madgraph+Delphes
- investigating usage of thrust axis, jets with different algorithms, soft muons...

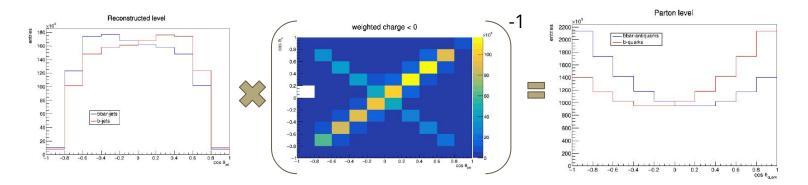

# **Analysis strategy**


- Investigated workflow:
  - 1. build **reco-level observable** using:
    - jet direction
    - charge determined with one of the two methods (studies in parallel)
  - 2. perform **unfolding** from reco-level to parton-level
  - 3. extract  $A^{b}_{FB}$  from **fit** to unfolded distribution



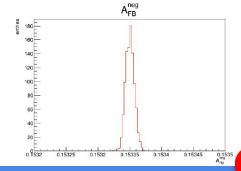
# Jet-charge based studies

- Mostly carried on in the context of **Leonardo's master thesis**
- Based on private MadGraph+Delphes simulation (with IDEA card)
- Anti-kt 0.5 jets used
- Simplified *b*-tagging (flat 80% eff., 10%/1% c/light-mis-tagging)
- Jet charge built with weighted sum of charges of tracks (as saved by Delphes) within  $\Delta R < 0.4$  from jet axis, with weight =  $p_{L}$ (track) w.r.t. jet axis
- Event selection:
  - $\circ \geq 2$  b-tagged jets
  - $\geq$  1 jet with charge > 0,  $\geq$  1 jet with charge < 0



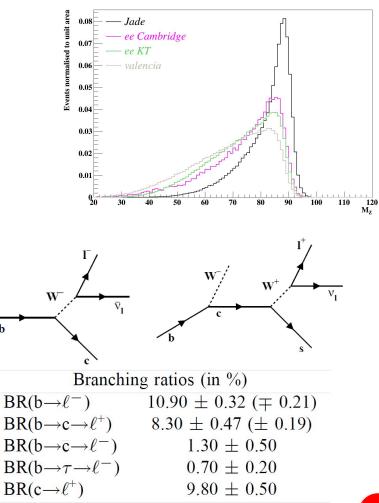



entries


# Jet-charge based studies - II

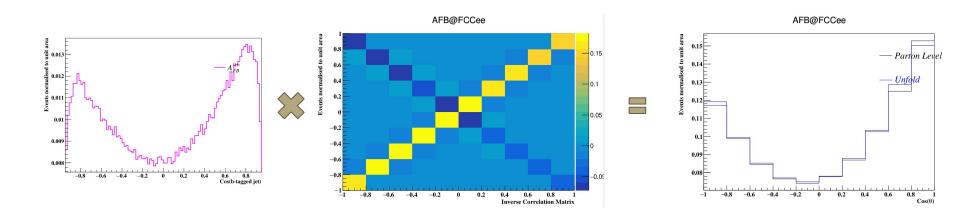
- **Response matrix** and **efficiency correction vector** built from 13 M *b* $\overline{b}$  events
- Unfolding with simple Matrix inversion, 10x10 matrix used




• **Statistical uncertainty** obtained from pseudo-experiments:

1.4 fb<sup>-1</sup>  $\pm$  0.0001 150 ab<sup>-1</sup>  $\pm$  0.00001



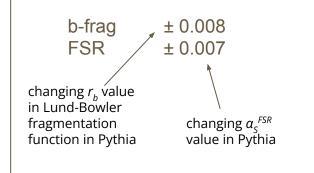

### Soft muon based studies

- Work started by **Hamzeh**
- Using **central FCC analysis software** and centrally produced samples
- Jets reconstructed by JADE algorithm
- Focusing on **soft muon tagging** method
- Investigating optimal **selection** to minimize contribution from "charge flips" due to  $b \rightarrow c \rightarrow \mu$  decays:
  - $\mu$  with ΔR(jet) < 0.4 (non-isolate) used to *tag* jets
  - $\circ$   $p_{T}(\mu) > 10 \text{ GeV cut applied}$
  - investigating cuts on other quantities ( e.g.  $p_T^{rel}(\mu, jet)$  )



### Soft muon based studies - II

• Unfolding implemented in the same way:




• Extraction of statistical uncertainty under way

# **Systematic uncertainties**

- We know statistical uncertainty will not be an issue:
  - LEP combination has ~equal stat and syst contributions
  - we expect ~10<sup>5</sup> times more statistics at FCC-ee  $\Rightarrow$  ~300 times smaller stat. uncertainty
- Systematic uncertainties expected to be dominant:
  - modelling *b*-fragmentation
    - affecting B-hadron kinematics
  - final-state QCD radiation effects
    - affecting jet shapes, distribution of charge,
       B-hadron kinematics...
  - **B-hadron decay** modelling:
    - mostly BRs, in particular for  $b \rightarrow c \rightarrow \mu$  decays
  - *b*-tagging efficiency:
    - uncertainty on mis-tag rate affecting background prediction
    - $p_{T}$  and  $\eta$  dependency of *b*-tagging eff. for signal

#### First numbers (for jet-charge based analysis)



### **Conclusions**

- Analysis workflow in place:
  - able to get results within **FCC framework** and with **stand-alone MG5+Delphes**
  - unfolding and pseudo-experiment **machinery** in place
- Carrying on two strategies in parallel:
  - will need to *converge* on a few details after completion of master thesis
- Started studying systematics:
  - already clear that **parton shower and hadronization modelling systematics** can kill the precision
    - if no ad-hoc calibrations / auxiliary measurements are considered
- Plan to have studies ready be the end of the year