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Dual Read-out Calorimeter for the IDEA detector

4p Dual readout calorimeters aim at improving the energy resolution of hadronic calorimeters

¢ Generally driven by the fluctuations between the electromagnetic and the hadronic component of showers

4 Measure the hadronic component and the electromagnetic component (dual readout) of the showers separately, to derive proper
correction factors to be applied to each component to reconstruct the energy of the impinging hadrons
4 Exploit a passive/material - fibre layout where two type of fibres, one sensitive to the usual scintillation process, a second type of

fibre producing Cherenkov light when ultra-relativistic particles cross with a speed higher than the speed of light in that fibre
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Goal of the project

The aim of the project 1s to build a Neural Network based algorithm that, from a given collection of energy deposits in the calorimeter,
1s able to completely reconstruct a jet in the detector

In general, particle flow algorithms applied to dual read-out calorimeters provide limited performance on the energy resolution of the

electromagnetic component of the jets

¢ Scenarios with EM calorimeter added in front of the IDEA dual read-out calorimeter —> Cons: calorimeter non-compensation

¢ Ongoing R&D for crystal dual read-out calorimeters to fix the compensation issue
Our goal: maximise the energy resolution of the dual read-out calorimeter exploiting NNs and taking as input all the available

kinematic variables
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Overview of the Project

G Geant4 simulation of a jet

Extract part.ic.le info at the input Extract calorimeter info: fiber
layer: position, momentum, position, fiber type, collected light
particle type by the fiber

!

a Clustering

NN based particle identification: charged: ex, P, T,
K=, p, neutral: y, m, K, s, n, A

Work in progress

NN based jet reconstruction:
starting from particle lists and their momenta, build a jet




Software Implementation

(1) Geant4 jets simulation: outside the scope of this project, provided by Iacopo and his team in KEY4HEP format

(2) Extract particle/calorimeter info from simulations

¢ New

code in /IDEADetectorSIM git repo: https.//github.com/HEP-FCC/IDEADetectorSIM/tree/master/ParticleFlow k4pandora

¢ It is an algorithm that reads KEY4HEP format and produces an output to perform a Neural Network training

¢ Preliminary plots of electrons and photons kinematic variables in the next slides

(3) Clustering: several clustering algorithms already on the market, i.e. NN based reconstruction algorithm for LAr TPC for the DUNE

experiment, with interfaces to run Pandora using Torch Data format —> Collaboration 1n progress with DUNE team

(4) NN based particle 1dentification: use as basis a particle flow approach, which aims at 1dentifying each single particle inside a jet

¢ Machine Learning with TensorFlow

¢ CPU

& GPU installation performed on Roma Tre cluster

¢ The site is equipped with about 50 server (mainly based on Blade technology) with a total amount of cores available (or VCPU) of

a

M r

bout 1500 interconnected with Infiniband (DDR 20Gbps € QDR 40Gbps)
T'he site has also 2 Graphical Processor Unit (GPU) K 80 (4 1n total: 2 x K40), where jobs can be parallelised 1f needed

~ There 1s a storage system present in the cluster for a total amount of about 700TB

¢ Extensive innovation next year, in order to double the CPU and storage system

(4) NN based jet reconstruction: construct a regression algorithm for particle-jet assignment and jet energy reconstruction

o’
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https://github.com/HEP-FCC/IDEADetectorSIM
https://github.com/HEP-FCC/IDEADetectorSIM/tree/master/ParticleFlow_k4pandora
https://www.tensorflow.org/resources/learn-ml/basics-of-machine-learning

Input from detector simulation
(EDM4HEP) format

Software Implementation - Block Scheme

4p Geant-based simulations of the IDEA detector for e, 7, K with
energy and angular uniform distribution (thanks for the inputs!)

4 Target: build a NN able to reconstruct the energy and the position
of the impinging particles and 1dentify them

& Regression and classification (to discriminate e, 7, K)
algorithms implemented 1n a single NN

4p State of the art:

¢ NN studies performed on an input sample containing 20 GeV
electrons, training performed for energy regression


https://www.tensorflow.org/resources/learn-ml/basics-of-machine-learning
https://github.com/HEP-FCC/IDEADetectorSIM/tree/master/ParticleFlow_k4pandora

Kinematic distributions - 20 GeV electrons

All events used

4 Position and energy collected in the scintillating (S) and Cerenkov (C) fibres in 100 events simulating impinging electrons of 20 GeV
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Energy deposits - 20 GeV electrons

Electron deposits '

~_

4r Energy collected in the scintillating (S) and Cerenkov (C) fibres in 100 events simulating impinging electrons of 20 GeV

A. Energy deposited in the detector, projected in the (x,),z) space —> combined fibres
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NN training using Tensortlow on GPUs

4 Tensorflow, interfaced with Keras, is used to build and train a NN on GPUs

4 Inputs: energy and position of each hit in the shower generated by the impinging electron and recorded in both S&C fibres—>
NN nput: 6 kinematic variables (£, x, y, z, ¢, flag) times hit multiplicity (~ 9300 info per event, 100 simulated events used)
¢ Maximum hit multiplicity: ~1500 per event
¢ Zero padding approach: if the number of hits in the event is less than

the max hit multiplicity, set to zero the remaining positions in the array —> ‘ #hidden layers = log, <9300
4 # initial nodes = # input info - \\\§ °
& Exploit the average hit multiplicity * 6 kinematic variables as #initial \\\\ 00 00—
nodes to reduce the complexity of the problem - \\\\:'2/7 ‘ ‘ .\
4 # hidden layers = 10 - “3}%0 SR e
4 At each layer the number of nodes halves : ’/{,‘;Q.} ‘ ‘ ’_,_
> L

-

Input layer Second to last layer
9300 nodes  NORIGAERIANEES 6 nodes




NN training using Tensortlow - Model

n

1 2
4 Model loss: MeanSquaredError(), — Z <ytme — ypred> , optimised with respect to the simulated energy of the incoming electrons
n
i=1
4 Adam, is used as optimiser to minimise the loss Refence
4 Testing different START learning rate
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https://arxiv.org/pdf/1412.6980.pdf

Conclusions and Next steps

4 Update NN plugging in angular variables

#p Train the NN on a newly simulated sample containing electrons with uniform energy (up to |

distributions, and info about the 1nitial spatial coordinates of the impinging electrons at truth |

125 GeV) and angular

¢ Perform the hyper parameter optimisation (i.e.: #layers, #epochs)

4 Determine the energy and position resolution from NN, for electrons

1) Repeat the above procedure also for z, K, u, y

4) Plan to move to Pytorch for better optimisation with Pandora

4 Long term goal: NN-based particle identification and jets reconstruction

Thanks a lot for listening!

evel —> Simulation 1n progress
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Back-Up Shlides

Learning rate

Too low Just right
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A small learning rate The optimal learning
requires many updates rate swiftly reaches the
before reaching the minimum point

minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors
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Simulated events:
ete- —>7Z(vv)H(yY)
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Energy deposits - ete- —>Z(vv)H(yY)
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Energy deposits - ete- —>Z(vv)H(yY)
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