EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA Advanced Photon Sources

M. Ferrario, INFN

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

Bando PNRR

Published on December 28th, 2021

MUR

REFORMS AND INVESTMENTS UNDER THE RECOVERY AND RESILIENCE PLAN NextGenerationEU

Call for proposals

Intervention field 6: Investment in digital capacities and deployment of advanced technologies DESI dimension 4: Integration of digital technologies + ad hoc data collections 055 - Other types of ICT infrastructure (including large-scale computer resources/equipment, data centres, sensors and other wireless equipment)

Mission 4 – "Education and Research" Component 2: from research to business Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures Action 3.1.1 "Creation of new research infrastructures strengthening of existing ones and their networking for Scientific Excellence under Horizon Europe

- Total available funds 400 M∈
- Minimal request 15 M \in of which 40% to the Southern Regions
- Personell funding allowed provided that 40% is reserved to women
- To be completed no later than December 31^{rst} 2025

Nome IR	Capofila	Amb	ito e Tipo	EUROFEL	Area Sci. Park	PSE	Distribute
ACTRIS	CNR	ENV	Distributed	EuroNanoLab (ENL)	CNR	PSE	Distribute
ANAEE	CNR	H&F	Distributed	EVN - JIVE	INAF	PSE	Distribute
Auger	INFN	PSE	Single site	FERMI	Area Sci. Park	PSE	Single site
BBMRI	CNR	H&F	Distributed	Fondazione CMCC	INGV	ENV	Distribute
BRIEF	SS S. Anna	DIGIT	Distributed	GARR-X	GARR	DIGIT	e-IR
CERIC-ERIC	Area Sci. Park	PSE	Distributed	IBISBA-IT	CNR	H&F	Distribute
CESSDA	CNR	SCI	Distributed	ICOS	CNR	ENV	Distribute
CLARIN-IT	CNR	SCI	Distributed	ILL	CNR	PSE	Single site
СТА	INAF	PSE	Distributed	INFRAFRONTIER	CNR	H&F	Distribute
DANUBIUS-RI	CNR	ENV	Distributed	INSTRUCT-ERIC	CNR	H&F	Distribute
DARIAH ERIC	CNR	SCI	Distributed	ISBE	CNR	H&F	Distribute
DiSSCo	CNR	ENV	e-IR	ISIS	CNR	PSE	Distribute
DTT	ENEA	ENE	Single site	KM3-NET	INFN	PSE	Distribute
EATRIS	CNR	H&F	Distributed	LBT	INAF	PSE	Single sit
EBRAINS	CNR	H&F	Distributed	LENS	CNR	PSE	Single site
ECCSEL	OGS	ENE	Distributed	LIFEWATCH	CNR	ENV	Distribute
ECORD	CNR	ENV	Distributed	LNF	INFN	PSE	Single sit
ECRIN	CNR	H&F	Distributed	LNGS	INFN	PSE	Single sit
E-ELT	INAF	PSE	Single site	LNL	INFN	PSE	Single sit
EGO	INFN	PSE	Single site	LNS	INFN	PSE	Single sit
EIRENE RI	CNR	ENV	Distributed	LOFAR	INAF	PSE	Distribute
ELETTRA	Area Sci. Park	PSE	Single site	METROFOOD-RI	ENEA	H&F	Distribute
ELI	CNR	PSE	Distributed	MIRRI	Torino	H&F	Distribute
ELIXIR - IT	CNR	H&F	Distributed	NFFA	CNR	PSE	Distribute
eLTER	CNR	ENV	Distributed	OPENAIRE	CNR	DIGIT	Distribute
EMBRC	SZN	H&F	Distributed	OPERAS	CNR	SCI	Distribute
EMSO	INGV	ENV	Distributed	Phen-Italy - nodo IT di	CNR	H&F	Distribute
EPOS	INGV	ENV	Distributed	EMPHASIS			<u></u>
E-RIHS	CNR	SCI	Distributed	PRACE-Italy	OGS	DIGIT	e-IR
ESRF Grenoble	CNR	PSE	Single site	RESILIENCE	CNR	SCI	Distribute
ESS ERIC	INAPP	SCI	Distributed	RFX	CNR	ENE	Single site
ESS ERIC (Spallation)	INFN	PSE	Single site	SESAME	INFN	PSE	Single site
ET	INFN	PSE	Single site	SHARE-ERIC	CNR	SCI	Distribute
EUFAR	CNR	ENV	Distributed	SIOS	CNR	ENV	Distribute
EuPRAXIA	INFN	PSE	Distributed	SKA	INAF	PSE	Distribute
Euro-Argo	OGS	ENV	Distributed	SoBigData	CNR	DIGIT	Distribute
	Chip	110.5	Distributed	TNG	INAF	PSE	Single site

Tabella 10: IR ad alta priorità

From the EuPRAXIA CDR

The EuAPS proposal benefits from the preparatory work done in the conceptual design phase of EuPRAXIA, both for the scientific case and the technology. It focuses on an ambitious but technically achievable goal and builds on the pre-existing investments at the SPARC_LAB facilities. As stated in the EuPRAXIA CDR the following EuPRAXIA Flagship Goals will be addressed by the EuAPS Project:

Flagship Innovation Goal 2: EuPRAXIA will develop together with laser industry a **new generation of high peak power lasers**, advancing the presently leading technology into the regime of 20 - 100 Hz repetition rate [...].

Flagship Science Goal 2: EuPRAXIA will deliver betatron X rays with up to 10¹⁰ photons per pulse, up to 100 Hz repetition rate and an energy of 5-18 keV to users from the medical area. [...].

Flagship Science Goal 7: EuPRAXIA will provide access to cutting edge laser technology with short pulse length in combination with high energy photon pulses [...].

We expect that the focus on a mature part of the EuPRAXIA project strongly supports project completion on the timescales that are required by PNRR.

Betatron Radiation Source

Betatron X Rays: Compact Medical Imaging

J.M. Cole et al, "Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone". Nature Scientific Reports 5, 13244 (2015)

Radioactive source

- **EuPRAXIA** laser advance (industry) will push rate from 1/min to 100 Hz.
- Ultra-compact source of hard X rays \rightarrow exposing from various directions simultaneously is possible in upgrades

Laser advance in EuPRAXIA \rightarrow fast **imaging** (e.g. following moving organs during surgery)

micron-scale – calcification)

Physics & Technology Background:

Small EuPRAXIA accelerator \rightarrow small

EuPRAXIA Advanced Photon Sources Proposal

Started on February 13th, 2022 - Submitted on February 28th, 2022

EuAPS Scientific Coordinator: M. Ferrario (INFN-LNF) EuPRAXIA/EuAPS Integration: R. Assmann (DESY & INFN)

1.5	_		
	_		
1			
	-	- Au	

Università di Rom

Scientific Advisory Committee

Operating Units Board

Scientific and Technical Board

Graduatoria Definitiva

Published on June 20th, 2022

I 3.1, Fund for the creation of an integrated system of research and innovation infrastructures Action 3.1.1 " Creation of new IR or strengthening of existing IR involved in the Horizon

Finanziato dall'Unione europea NextGenerationEU

Graduatoria definitiva ESFRI area: PSE - Physical Sciences and Engineering								
Position	Proposal code	Applicant	Eligible costs	Total Score	Reduction %			
1	ËŬ ARS.	LINE Redeel & Fisica Redeer	22.350.588,00 €	191	-17.6			
2	I-PHOQS	Contrigito Nazionale Niceche	50.000.000,00 €	188	-16.7			
3	LNGS	Like kalad d file kalar	20.058.826,53 €	185	-19.0			
4	K3NET	Liften Reduce 4 Filten Reduce	67.186.973,06 €	183	-13.0			
5	IR0000027	Consiglio Nazionale Noreche	75.165.077,53 €	182	-21.1			
6	IR0000037		16.671.850,52 €	181	-12.5			
7	IR0000012		71.477.540,83 €	181	-19.9			
8	IRIS	Life Kutet d fice Keter	59.996.968,15 €	180	-20.0			

Europe Scientific Excellence objectives and the establishment of networks "

Qualità scientifica: 50/50; Impatto: 47/50; Implementazione: 94/100

Budget Distribution among WPs

	COSTS (€) WORK PACKAGE [WP.2 - Betatron Radiation Source]								
		Costs	Costs included in the request for funding						
		To be located within the eight southern Regions To be located outside the eight southern Regions		Total requested grant					
a.	Fixed term personnel specifically hired for the project	120.000,00	878.000,00	998.000,00					
b.	Scientific instrumentation and technological equipment, software licenses and patent	1.000.000,00	6.840.400,00	7.840.400,00					
c.	Open Access, Trans National Access, FAI principal implementation	0,00	0,00	0,00					
d.	Civil infrastructures and related systems	0,00	0,00	0,00					
e.	Indirect costs, including running costs	78.400,00	540.288,00	618.688,00					
f.	Training activities	0,00	0,00	0,00					
Tot	al	1.198.400,00	8.258.688,00	9.457.088,00					

		COS' WORK PACKAGE [WP.3 - H	ΓS (€) Iigh Power Laser Beam Line]					
		Costs	Costs included in the request for funding					
		To be located within the eight southern Regions	To be located outside the eight southern Regions	Total requested grant				
a.	Fixed term personnel specifically hired for the project	150.000,00	0,00	150.000,00				
ь.	Scientific instrumentation and technological equipment, software licenses and patent	5.917.812,47	0,00	5.917.812,47				
c.	Open Access, Trans National Access, FAI principal implementation	0,00	0,00	0,00				
d.	Civil infrastructures and related systems	1.300.006,38	0,00	1.300.006,38				
e.	Indirect costs, including running costs	496.681,15	0,00	496.681,15				
f.	Training activities	0,00	0,00	0,00				
Tot	al	7.864.500,00	0,00	7.864.500,00				

COSTS (€) WORK PACKAGE [WP.4 - High Repetition Rate Laser Beam Line]								
		Costs	Costs included in the request for funding					
		To be located within the eight southern Regions	To be located outside the eight southern Regions	Total requested grant				
a.	Fixed term personnel specifically hired for the project	0,00	240.000,00	240.000,00				
ь.	Scientific instrumentation and technological equipment, software licenses and patent	0,00	4.024.986,00	4.024.986,00				
c.	Open Access, Trans National Access, FAI principal implementation	0,00	0,00	0,00				
d.	Civil infrastructures and related systems	0,00	280.000,00	280.000,00				
e.	Indirect costs, including running costs	0,00	318.164,00	318.164,00				
f.	Training activities	0,00	0,00	0,00				
Tota	d	0,00	4.863.150,00	4.863.150,00				

WP2 - Betaron Radiation Source at SPARC_LAB

WP2 - Betaron Radiation Source at SPARC_LAB

• Laser/Plasma interaction chamber at SPARC_LAB just intalled and possible betatron radition user's beam line

WP2 - Betaron Radiation Source at SPARC_LAB

CrossMark

Electron beam Energy [MeV]	100-500
Plasma Density [cm ⁻³]	10 ¹⁷ - 10 ¹⁹
Photon Critical Energy [keV]	1 - 10
Nuber of Photons/pulse	$10^{6} - 10^{8}$

First measurements of betatron radiation at FLAME laser facility

A. Curcio^{a,b,*}, M. Anania^a, F. Bisesto^{a,b}, E. Chiadroni^a, A. Cianchi^a, M. Ferrario^a, F. Filippi^{a,b}, D. Giulietti^c, A. Marocchino^a, F. Mira^b, M. Petrarca^d, V. Shpakov^a, A. Zigler^{a,e}

Fig. 6. Betatron radiation spectrum detected by the *CdTe* spectrometer. Laser, plasma and electron parameters: energy per pulse $E_L = 1.5$ J, pulse duration $\tau = 35$ fs, focus rms radius $\sigma_r \sim 5 \,\mu$ m. Electron plasma density $n_e \sim 6 \pm 1 \times 10^{18}$ cm⁻³, electron mean energy 200 MeV, energy spread 30%, electron beam divergence 12 mrad, bunch charge 20 pC. The acceleration length was 1 mm.

WP1 - Betaron Radiation Source at EuPRAXIA@SPARC_LAB

Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@SPARC_LAB

Francesco Stellato ^{1,2,*}, Maria Pia Anania ³, Antonella Balerna ³, Simone Botticelli ², Marcello Coreno ^{3,4}, Gemma Costa ³, Mario Galletti ^{1,2}, Massimo Ferrario ³, Augusto Marcelli ^{3,5,6}, Velia Minicozzi ^{1,2}, Silvia Morante ^{1,2}, Riccardo Pompili ³, Giancarlo Rossi ^{1,2,7}, Vladimir Shpakov ³, Fabio Villa ³ and Alessandro Cianchi ^{1,2}

$$\frac{d^2 I}{d\omega d\Omega}(\theta=0) \cong \frac{N_\beta 3e^2}{2 \pi^3 \epsilon_0 c} \gamma^2 \left(\frac{\omega}{\omega_c}\right)^2 K_2^2(\frac{\omega}{\omega_c})$$

Figure 1. Betatron radiation spectra simulated for a source size of 3 μ m and 3 different plasma densities. The total number of photons is $1.7 \times {}^9$ for the $9.0 \times 10^{16} \text{ cm}^{-3}$ density, $9.9 \times {}^8$ for the $6.0 \times 10^{16} \text{ cm}^{-3}$ density and $4.1 \times {}^8$ for the $3.0 \times 10^{16} \text{ cm}^{-3}$ density.

Betatron Imaging (PCI, CT) => sub-µ resolution Betatron X-ray tme-resoved spectroscopy (XAS) Beam Diagnostics FEL Seeding Betatron coherence

WP3 - I-LUCE INFN-Laser indUced radiation acCEleration

At INFN-LNS-Catania the focus will be placed on high charge secondary particle production with innovative high power lasers.

WP4 - J-class, 100Hz laser infrastructure @CNR-INO Pisa

At CNR-Pisa the consortium will establish user access to the next generation of kW scale high repetition rate laser.

Intense Laser Irradiation Lab @ CNR-INO Pisa

subPW Target Area(s)

The new ultrashort, J-class, high rep rate laser facility is expected to be hosted in the 10TW Target Area (~100m2 excluding room for ancillaries) currently available.

Conclusions

- One of the ambitions of EuAPS is to be the first operating brick of the EuPRAXIA project well in advance compared to the EuPRAXIA time scale.
- Thus bringing together laser, plasma and advanced accelerator scientists with radiation user's experts to promote the blooming of a new scientific community well prepared to efficiently exploit the scientific opportunities of EuPRAXIA.
- Significant advancement in Laser Technology for EuPRAXIA
- X-ray users beam line scientific case in preparation, medical applications
- A lot of new interesting beam physics still possible (various plasma configurations, plasma undulator and FEL, beam diagnostics, limitation for LC)

Thanks for your attention

EuPRAXIA_PP Kick-off meeting, LNF, November 24-25, 2022

SPARC_LAB Tour at 14:30

.

Towards EuPRAXIA 2nd Site

Eupraxia laser development is aimed at delivering more efficient, kW class PW laser driver for plasma acceleration at >100 Hz rate

- CURRENT
- PW class,
- Hz repetition rate,
- ≈10 W average power
- flashlamp pumped
- No thermal load transport

- EuAPS
- 50 TW peak power
- 100 Hz repetition rate
- 100 W average power
- Diode pumped
- Thermal load effects

- EuPRAXIA
- PW class,
- 100 Hz repetition rate,
- multi kW average power,
- diode pumped
- Full thermal load transport

Leonida A. Gizzi (WP12) / EuPRAXIA PPP Kick-Off meeting / Nov.24-25, 2022

EUPRAXIA Front-end development ongoing

100 Hz operation at Joule level pulse energy is outstanding and a unique opportunity to address HAP issues

Part of the EUAPS (Eupraxia Advanced Photon Sources, 4.8 M€ dedicated funding @ CNR-Pisa)

Leonida A. Gizzi (WP12) / EuPRAXIA PPP Kick-Off meeting / Nov.24-25, 2022

EUPRAXIA User Facility Upgrade at CNR-Pisa (EULAb-Med)

Full 100 Hz system at Joule level will allow to tackle operational issues and mechanical stability

Part of the IPHOQS (ELI/LENS/CUSBO Photonics Infrastructure), and Tuscan Health Ecosystem 4.5 M€ dedicated funding @ CNR-Pisa)

Headquarter and Site 1: EuPRAXIA@SPARC_LAB

Laser-plasma parameters

SCAN:Minimun Energy0.25 JMaximum Energy3 JTemporal length25 fsWave length800 nmBeam Waist *15 μmMin Plasma Density10¹⁷ cm⁻³Max Plasma Density10¹⁹ cm⁻³

Costa, Galletti

Sub.3: Electron beam charge, WP: 2-4 keV

Costa, Galletti

E-beam max energy [MeV]

Betatron Radiation

Number of Betatron Oscillations:

$$N_b \sim \frac{k_p \ L_{deph}(E_{max})}{\sqrt{3 \ E_{max}}}$$

maximum electron energy E_{max}

Sub.2: Critical photon energy, WP: 2-4 keV

Critical photon energy:

$$E_c \sim 1.5 \hbar E_{max}^3 \sigma k_{\beta}^2 (E_{max}) c$$

where $k_{\beta}(z) = k_p / \sqrt{3\gamma(z)}$

Costa, Galletti

Betatron Radiation Energy $E_c = 2 - 4 \ keV$

$1.9 \ keV < E_c < 2.1 \ keV$

$E_L(J)$	$ ho \ (10^{18} \ cm^{-3})$	L_{deph} (mm)	$L_{depl} (mm)$	$E_{max} e^- (MeV)$	$E_{min} e^- (MeV)$	Q e ⁻ (pC)	N_b
1.5	2	7	6	800	8	260	28
2	2.5	6	5	800	8	300	25
2.5	2.8	5	4.5	740	7	330	23

2.9 $keV < E_c < 3.1 keV$

$E_L(J)$	$ ho \ (10^{18} \ cm^{-3})$	L_{deph} (mm)	$L_{depl} (mm)$	$E_{max} e^- (GeV)$	$E_{min} e^- (MeV)$	Q e ⁻ (pC)	N _b
2.6	2.1	7.5	6.1	0.98	8	390	27
2.8	2.2	7	5.7	1	8	400	26
3	2.3	6.7	5.6	1	8	410	25

$3.9 \, keV < E_c < 4.2 \, keV$

$E_L(J)$	$ ho \ (10^{18} \ cm^{-3})$	L_{deph} (mm)	$L_{depl} (mm)$	$E_{max} e^- (GeV)$	$E_{min} e^- (MeV)$	Q e ⁻ (pC)	N _b
2.9	1.9	9	7	1.2	9	450	29

First measurements of betatron radiation at FLAME laser facility CrossMark A. Curcio^{a,b,a}, M. Anania^a, F. Bisesto^{a,b}, E. Chiadroni^a, A. Cianchi^a, M. Ferrario^a, F. Filippi^{a,b}, D. Giulietti^c, A. Marocchino^a, F. Mira^b, M. Petrarca^d, V. Shpakov^a, A. Zigler^{a,e}

Fig. 6. Betatron radiation spectrum detected by the CdTe spectrometer. Laser, plasma and electron parameters: energy per pulse $E_L = 1.5$ J, pulse duration $\tau = 35$ fs, focus rms radius $\sigma_r \sim 5 \,\mu$ m. Electron plasma density $n_e \sim 6 \pm 1 \times 10^{18} \,\mathrm{cm}^{-3}$, electron mean energy 200 MeV, energy spread 30%, electron beam divergence 12 mrad, bunch charge 20 pC. The acceleration length was 1 mm.

Electron beam Energy [MeV]	100-500
Plasma Density [cm ⁻³]	10 ¹⁷ - 10 ¹⁹
Photon Critical Energy [keV]	1 - 10
Nuber of Photons/pulse	$10^{6} - 10^{8}$

HP laser out

EuPRAXIA_PP Kick-off me

Phased Implementation of Construction Sites

Laser

RF Injector

Plasma

Accelerator

1: INFN-LNF construction funding 108 M€

2: INFN/CNR/TorVer demo facility 22 M€ (PNRR)

Undulator Undulator

Beamline LB-A: FEL

FEL user area 1

FEL user area 2

EuPRAXIA_PP Kick-off meeting, LNF, November 24-25, 2022