EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

WP12 – Laser Technology and Liaison to Industry

Leonida Antonio GIZZI/ CNR-INO, Pisa, Italy Paul CRUMP/ FBH Berlin, Germany

November 24-25, 2022

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

Preparatory Phase - WP12

Technical WP's Main Goals

Update of CDR concepts and parameters, towards technical design (full technical design requires more funding)

Specify in detail **Excellence Centers and their required funding**: TDR related R&D, prototyping, contributions to construction

Help in defining funding applications for various agencies

Main Objective of WP12 / duration 48m :

This is the Laser Technology R&D WP, dealing with all aspects required to target and address laser needs for EuPRAXIA

As one of the TECHNICAL WPs of PP, WP12 should:

- Make progress towards the technical design of the laserdriver for the 2nd laser-driven site;

- strengthen the role of industry to enable the delivery of a robust laser-driver to enable reliable and affordable operation;

Work package number	12			Lead beneficiary		CNR		
Work package title	Laser Technology and Liaison to Industry							
Participant number	1	2	9	10	11	16	20	23
Short name of part.	INFN	CNR	THAL	DESY	FBH	USZ	STFC	ELIBL
Person months per part.:	0 (+12)	18 (+30)	0 (+4)	6 (+6)	6 (+2)	0 (+6)	0 (+12)	18 (+6)
Participant number	27	32	34					
Short name of part.	CLPU	ILT	EMPA					
Person months per part.:	0 (+2)	0 (+1)	0 (+56)					
Start month	1		End month	48				

Effort

Preparatory Phase - WP12

Deliverables

Del no.	Deliverable Name	WP no.	Beneficiary	Туре	Diss. level	Due month
D12.1	Report on structures to be funded from national/bilateral/european level for laser technology		2 - CNR	R — Document, report	PU - Public	12
D12.2	Report on technical results achieved in the field of Lasers	WP12	2 - CNR	R — Document, report	PU - Public	24
D12.3	TRL Report and maturity assessment on the development of Lasers	WP12	2 - CNR	R — Document, report	PU - Public	42

Preparatory Phase - WP12

Milestones

Milestone No	Milestone Name	Work Package No	Lead Beneficiary	Means of Verificatio	Due Date (month)
25	Definition of criteria for down-selection of core industrial tech for the laser design	WP12	2-CNR	Report	12
26	Update of concepts for EuPRAXIA, systems status report (WP12)	WP12	2-CNR	Report	24
27	Design and project of transport beamlines focusing on the preservation of beam parameters		2-CNR	Report	30

EUPRAXIA Design study path for EuPRAXIA Laser-driver

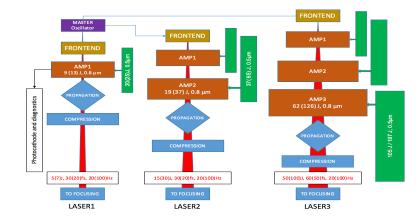
Baseline: proven technology based on Ti:Sa technology, pumped by diode-pumped lasers

- Strong R&D effort in place (e.g HAPLS@ELI now entering into USER operation)
- ≈ 3-5 years to go to first industrial LWFA demonstrator [1]
- Fully diode pumped with Direct Chirped Pulse Amplification with lasing media pumped directly by diodes is ideal for higher efficiency and higher rep-rate;
 - several materials under consideration, Yb:CaF2, Tm:YLF, Tm:Lu2O3 (Pisa) ...
 - PENELOPE (Jena) 150 J, 1 Hz, at 1030 nm
 - Available ps kW thin disk lasers using plasma modulation (Oxford [2])
- **OPCPA** optical parametric amplification within large-aperture (LBO) crystals;
 - ELI-Beamlines facility, L2 DUHA (100 TW, 2 to 5 J between 20, 50, 100 Hz)

Partially addressed by new/pending proposal

^{1.} L.A Gizzi, F. Mathieu, P. Mason, P P Rajeev, *Laser drivers for Plasma Accelerators*, in Félicie Albert et al, 2020 roadmap on plasma accelerators, 2021 New J. Phys. 23 031101, <u>https://doi.org/10.1088/1367-2630/abcc62</u>;

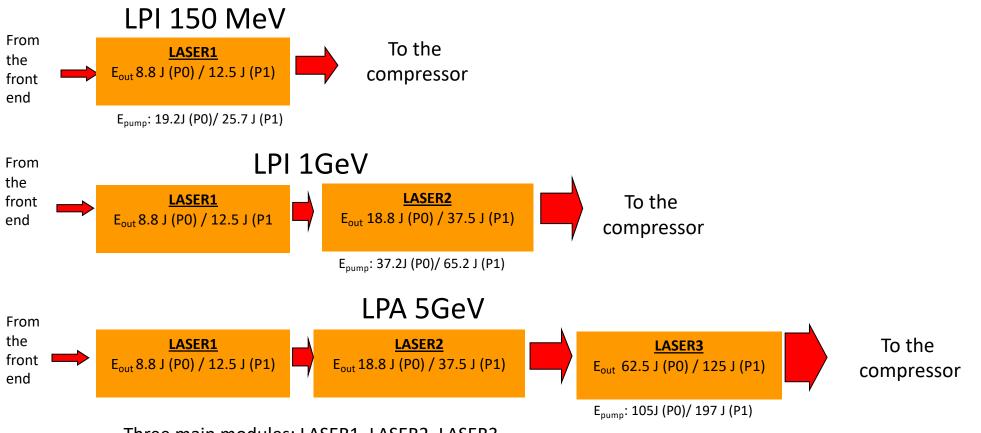
^{2.} O. Jakobsson, S. M. Hooker and R. Walczak, PRL, 2021



A viable laser driver for a user plasma accelerator with high readiness

LASER1 - Injector 150 MeV			
Parameter	Unit	PO	P1
Wavelength	nm	800	800
Max Energy on Target	J	5	7
Max Total Output Energy	J	8.8	12.5
Shortest Pulse Duration	fs	30	20
Repetition Rate	Hz	20	100
Energy Stability RMS	%	1	0.6
LASER2 - Injector 1 GeV			
Parameter	Unit	PO	P1
Wavelength	nm	800	800
Max Energy on Target	J	15	30
Max Total Output Energy	J	18.8	37.5
Shortest Pulse Duration	fs	30	20
Repetition Rate	Hz	20	100
Energy Stability RMS	%	1	0.6
LASER3 - Accelerator 5 GeV			
Parameter	Unit	PO	P1
Wavelength	nm	800	800
Max Energy on Target	J	50	100
Max Total Output Energy	J	62.5	125
Shortest Pulse Duration	fs	60	50
Repetition Rate	Hz	20	100
Energy Stability RMS	%	1	0.6

- L. A. Gizzi et al., NIMA 909, 58 (2018)
- G.Toci et al., Instruments 3, 40 (2019)



EuPRAXIA Laser: Modular Architecture

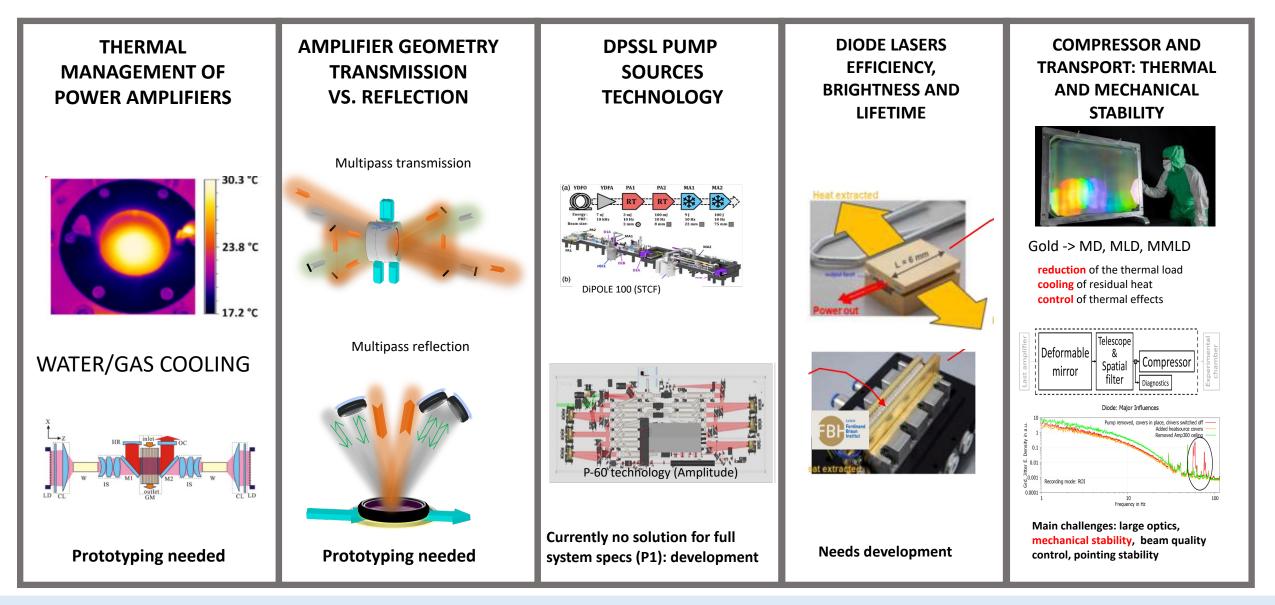
Foreseen I/O energy and pump requirements

Three main modules: LASER1, LASER2, LASER3 LASER1: stand-alone for LPI 150 MeV

LASER2: output stage for LPI 1 GeV, second stage for LPA 5GeV

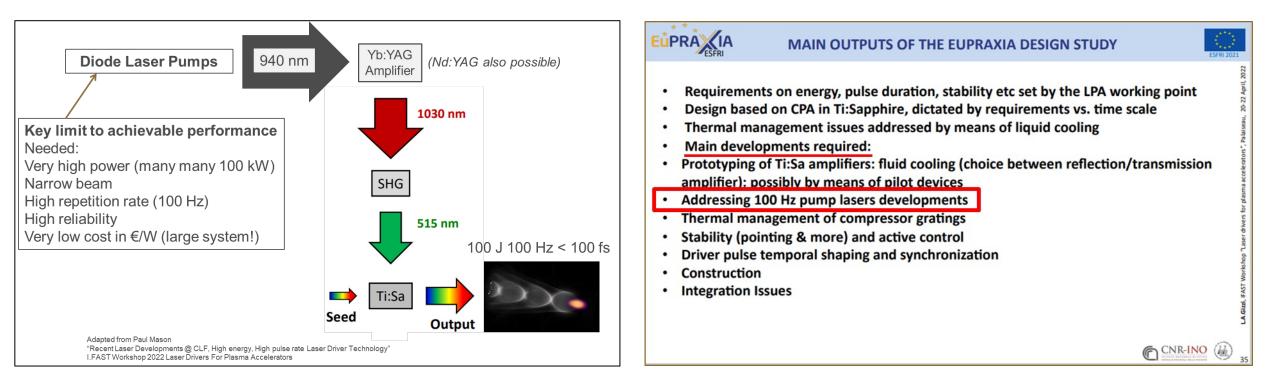
LASER3: high energy stage for LPA 5GeV

Two levels of performance : P0 and P1



- Requirements set by the LPA working point
- Design based on Ti:Sapphire, dictated by requirements
- Thermal management issues
- Construction
- Integration Issues
- Main development needed

Underpinning EuPRAXIA Laser TDR


Leonida A. Gizzi (WP12) / EuPRAXIA PPP Kick-Off meeting / Nov.24-25, 2022

EUPRAXIA Diode laser pump challenge: Economic 100 Hz

Diode lasers source of all optical power in EuPRAXIA

Challenge: 100 Hz pump supply

Preparatory review with Industry Berlin, held 5 October 2022 "Berlin Laser Tech Symposium" <u>Large industry</u>: Coherent, Leonardo, Lumibird, Jenoptik, Hamamatsu, <u>High-tech SMU</u>: Lastronics <u>Research</u>: CNR (Gizzi). <u>Chair</u>: FBH Berlin (Crump)

Consensus: Economic high duty cycle diode laser pumps remain extremely challenging Improved packaging and diodes and their reliability assurance strongly demanded

EUPRAXIA Diode specifications: known and open points

Diode pump laser technical specs broadly clear (performance)

- 20...100 Hz
- ~ 80 cm² square flat-top beam, imaged into amplifier, with up to several meters offset
- < 6° divergence angle, high polarization purity
- Multiple 500 kW units needed for largest system
- Yb:YAG: λ = 940 nm, ~ 500 µs pulses (5% duty cycle) high duty cycle packaging needed
- Nd:YAG: λ = 800 nm, ~ 200 μ s pulses (2% duty cycle) higher power diodes needed

Key open topics:

- Lifetime requirements (uptime, system size, replacement rates / failure rate)
- Costs (purchase, maintenance, operation)
- Efficiency (energy cost of operation)
- Specifications / requirements for alternative wavelengths

Support also from parallel programs:

- Innovative approaches via capability of FMD ("research fab germany" e.g. coop FBH-HHI)
- Lessons / technology from rapidly developing secondary-source industry (e.g. BMBF systems call, just closed)

Diode development tasks: needs, activities

Progress on funding

Gap!

Needed diode laser pump development goals and research efforts (2...3 years technology, 2...3 years qualification)

- Improved diode laser performance: higher efficiency, higher power
- Improved packaging: high performance economical cooling
- Cost reduction: higher power (€/W), yield (€)
- Prototyping of new concepts (e.g 780 nm or 1600 nm for Thulium)
- Reliability assurance (low failure rate)
- Security of supply: standardization, assurance of first, second, third-source suppliers; European supply

Ongoing / forthcoming matching funds and projects to meet EuPRAXIA needs (build towards "excellence center Berlin")

•	Diodes + package: EU Grant application CREATE	(on short list)
	 Higher duty-cycle economic packaging for Yb:YAG – (FBH, DILAS, STFC) 	
	 Higher power bars for Nd:YAG designs – (FBH, DILAS, Amplitude) 	
•	 <u>Package + diodes</u>: ERDF project on low-cost extremely high duty cycle diodes & modules Innovative packaging, bars, process technology (FBH + Trumpf) 	(decision pending)
•	 <u>Diodes:</u> Higher power, highly efficient, high brightness diode lasers Ongoing direct bilteral cooperation FBH-Trumpf 	(funded)
•	 <u>New concepts</u>: EFRE-supported FBH application centre for innovative diode pumps Prototyping of new concepts e.g. innovative wavelengths, beam-forming, operation modes 	(decision pending)
•	New concepts: ERDF project on continuous wave 780 nm pumps at FBH	(funded, 2023)

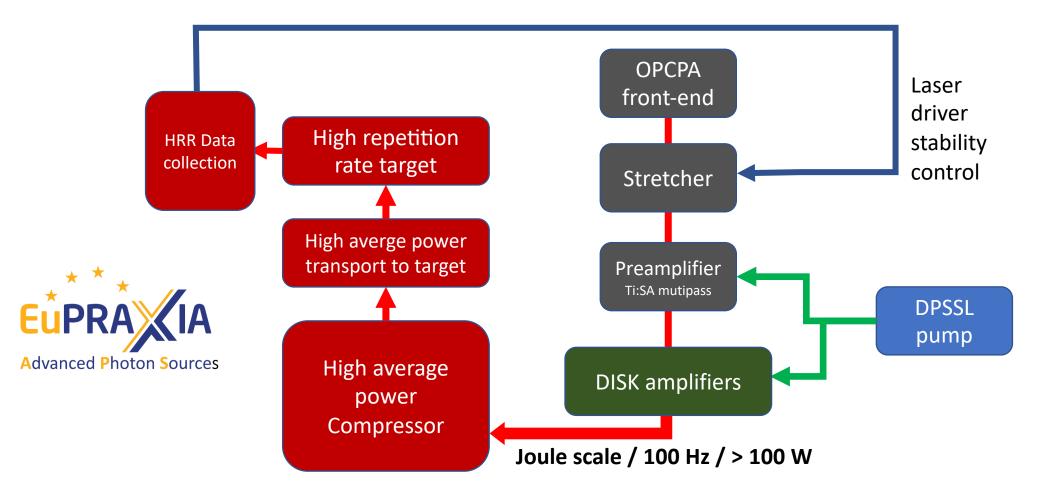
Towards EuPRAXIA 2nd Site

Eupraxia laser development is aimed at delivering more efficient, kW class PW laser driver for plasma acceleration at >100 Hz rate

- _____
- CURRENTPW class,
- Hz repetition rate,
- ≈10 W average power
- flashlamp pumped
- No thermal load transport

- EuAPS
- 50 TW peak power
- 100 Hz repetition rate
- 100 W average power
- Diode pumped
- Thermal load effects

- EuPRAXIA
- PW class,
- 100 Hz repetition rate,
- multi kW average power,
- diode pumped
- Full thermal load transport

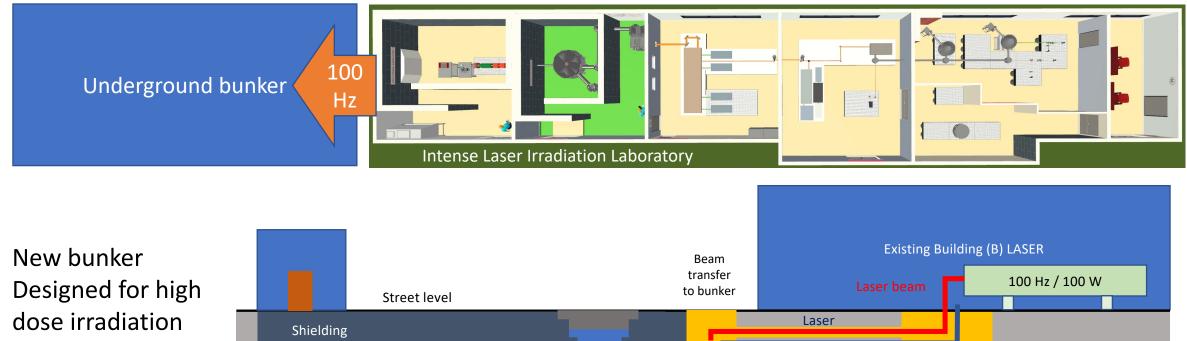


Leonida A. Gizzi (WP12) / EuPRAXIA PPP Kick-Off meeting / Nov.24-25, 2022

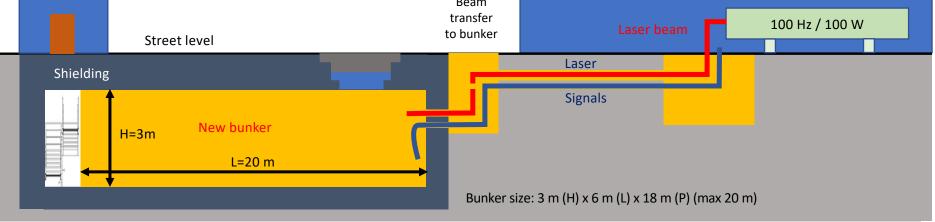
EUPRAXIA Front-end development ongoing

100 Hz operation at Joule level pulse energy is outstanding and a unique opportunity to address HAP issues

Part of the EUAPS (Eupraxia Advanced Photon Sources, 4.8 M€ dedicated funding @ CNR-Pisa)

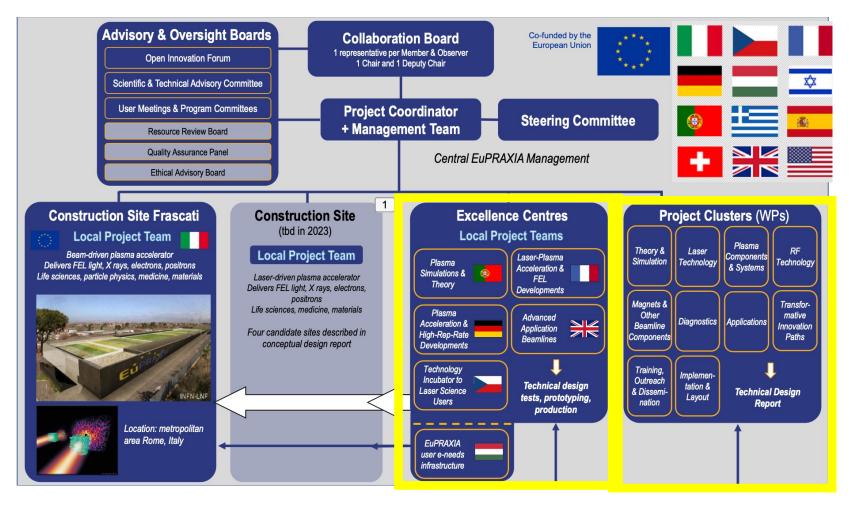


Leonida A. Gizzi (WP12) / EuPRAXIA PPP Kick-Off meeting / Nov.24-25, 2022


EUPRAXIA User Facility Upgrade at CNR-Pisa (EULAb-Med)

Full 100 Hz system at Joule level will allow to tackle operational issues and mechanical stability

dose irradiat (100 Hz)


Part of the IPHOQS (ELI/LENS/CUSBO Photonics Infrastructure), and Tuscan Health Ecosystem 4.5 M€ dedicated funding @ CNR-Pisa)

Reaching ultimate laser-driver performance for EuPRAXIA requires significant breakthroughs

Commitment of *excellence centers* is needed to address open technical issues to advance laser design towards TDR:

Cooperation with facilities and labs engaging **construction and operation** of medium-large scale installations will be crucial

Funding towards shown pending tasks and challenges currently under development: needs effort

Continuing to engage collaborations with labs, also via matching networking programme (e.g. IFAST)

Collaboration needed

Increasing population of industrial players for laser and components development, in strong collaboration with Institututional players

