Cluster Nazionale CSN4 Parallel computing and scientific activity Roberto Alfieri - Parma University & INFN, Gr.Coll. di Parma

LNL - 16/02/2011

Outline

- PC-clusters in the theoretical physics community
- The CSN4cluster project
- New granularity attributes on the grid
- CSN4cluster jobs submission
- Examples of physics parallel applications executed on the cluster
- Conclusions

Parallel computing in the INFN theo-phys community

Lattice simulations (local communication oriented): APE projects

General purpose (parallel and serial): PC clusters

→ 2005 : A lot of clusters small-medium sized - often managed by users

2005-2007 : Single centralized cluster (Cnaf) - 24 nodes Xeon +infiniband

2007-2009 : 4 PC clusters based on federated projects - grid access for serial jobs

2010 \rightarrow : Single centralized cluster ("CSN4cluster" project)

CSN4cluster: timeline

late 2009: collaboration CSN4-CCR to define cluster requirements and evaluate sites proposal

Febr. 2010: INFN-Pisa project approved

June 2010: cluster in operation for sequential jobs

July 2010: call for scientific proposals

Sept. 2010: 15+1 projects approved and fair-shares defined

Dec. 2010: cluster in operation for parallel jobs

CSN4cluster access: theophys VO

Access method: via Infngrid only (both serial and parallel jobs)

Access policy: - thanks to G. Andronico (CT) -

- Theophys VO members (~124 up to now) with low priority
- Theophys subgroups (or others) can apply for a granted fairshare to the CSN4 cluster committee

Active fairshare grants:

- 16 has already been assigned, corresponding to 16 CSN4 IS proposals
- Requests: 130K day*core serial + 250K day*core parallel = 380K day*core
 - availability: 365 K day*core per year -

Details: http://wiki.infn.it/cn/csn4/calcolo/

MPI and multi-thread support in EGEE

MPI has always been supported by EGEE but..

- Survey for users and administrators in April 2009: MPI is still scarcely used
- Multi-thread programming should be supported in EGEE to exploit the upcoming multi-core architectures.
- => Set-up of a new EGEE MPI-WG.

Recommendation document released in 06/2010: <u>http://www.grid.ie/mpi/wiki/WorkingGroup</u>

New attributes in the JDL are proposed by the MPI-WG for multi-thread support

Attribute	Meaning
CPUNumber=P	Total number of required CPUs
SMPGranularity=C	Minimum number of cores per node
HostNumber=N	Total number of required nodes
WholeNodes=true	Reserve the whole node (all cores)

Granularity attributes : JDL examples

WholeNodes=false (not set)

CPUNumber = 24;	<pre># Default: 24 CPUs any number of nodes</pre>
CPUNumber = 64;	# 32 nodes, with 2 CPUs per node
SMPGranularity = 2;	# (SMPsize >=2)
CPUNumber = 16;	# 2 nodes, with 8 CPUs per node
HostNumber = 2;	# (SMPsize >=8)

WholeNode=true

WholeNodes=true; HostNumber=2; SMPGranularity=8;	#2 whole nodes with SMPsize>=8
WholeNodes=true; SMPGranularity=8;	<pre># 1 whole node with SMPsize>=8 # (default HostNumber=1)</pre>
WholeNodes=true; HostNumber=2;	<pre># 2 whole nodes with SMPsize>=1 # (default SMPGranularity=1)</pre>

Granularity support: preliminary patch

New JDL attributes proposed by the MPI-WG aren't implemented in gLite yet

A preliminary patch for Cream-CE has been developed and tested in collaboration with the gLite middleware developers

- thanks to M. Sgaravatto (PD), S. Monforte (CT), A. Gianelle (PD) -

The patch has been **installed on the CSN4cluster** and is now operational with a temporary syntax - waiting for the final integration of the attributes in gLite -

Temporary syntax JDL examples:	
CeRequirements = "wholenodes=\"true\"	&& hostnumber==2"; # 2 whole nodes
CPUNumber = 16; CeRequirements = "SMPGranularity==2"	# 8 nodes with 2 CPUs per node

CeRequirements are interpreted by the CEs. Match-Making process is not involved.

CSN4cluster: computational resources

Resources:		- thanks to	o E. Mazzoni, A. Ciampa, S. Arezzini (PI) -
	1 CE	gridce3.pi.infn.it	(Cream - LSF)
	128 WNs	Dual-Opteron 8356	(2x4 cores per node) \approx 10 TFlops peak perf.

In modern multicore processors the memory architecture is NUMA

- Cpu/memory affinity is the ability to bind a process to a specific CPU/memory bank -

Measured network performance (using NetPIPE):

Memory performance (peak):

	Comm Type	Latency	MAX Bandw.	Memory Type	Latency	MAX Bandw.
1	Intra-socket	640 ns	14 GBytes/s	L3 cache	≈35 ns	
2	Intra-board	820 ns	12 GBytes/s	DDR3	≈50 ns	≈32 GBytes/s
3	infiniband	3300 ns	11 GBytes/s	Numa (HT or QPI)	≈90 ns	≈11 GBytes/s

CSN4cluster: resources access

Direct job submission to Cream-CE in the JDL

Requirements =(other.GlueCEInfoHostName == "gridce3.pi.infn.it")

gives access to 2 queues:

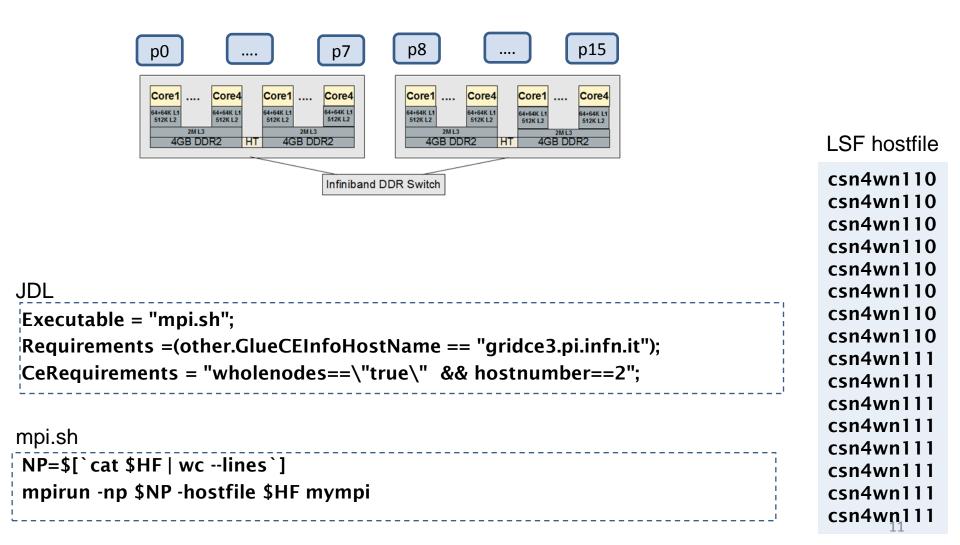
theompi : parallel job only - reservation time 8h -

Role=parallel required

voms-proxy-init -voms theophys:/theophys/<group_name>/Role=parallel

theoshort: serial short jobs - runtime 4h -

Role=parallel should not be specified

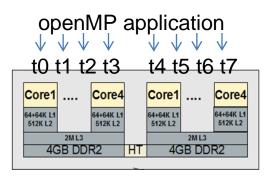

voms-proxy-init -voms theophys:/theophys/<group_name>

- The serial queue allows the exploitation of cores when they are unused by parallel jobs -

MPI job : explicit submission

Direct job submission means we know SMP architecture, MPI flavours, ecc..

- This example executes 16 MPI ranks (2 whole nodes) -

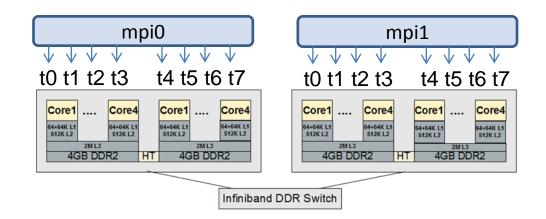

openMP job

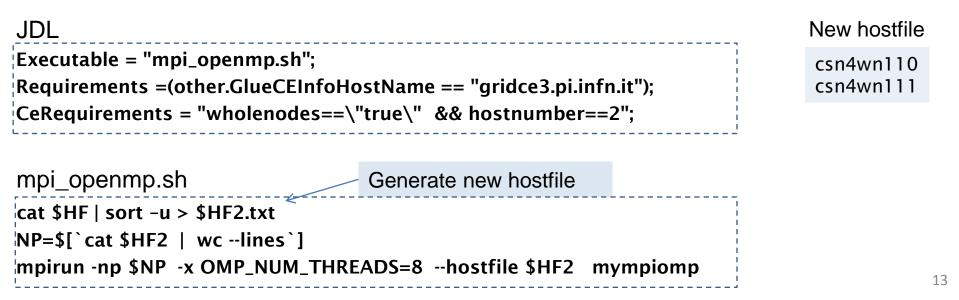
Wholenodes allows the submission of multi-thread jobs on the grid

- This example executes 8 openMP threads on a whole nodes -

וחו

- The user should be aware of potential memory affinity impact on performance -

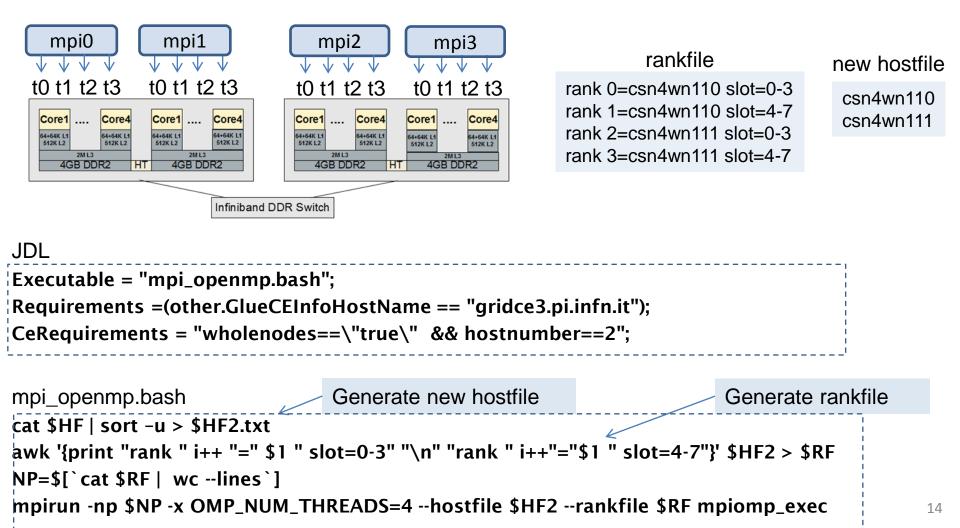



JDE	
Executable = "openmp.sh"; Requirements =(other.GlueCEInfoHostName == "gridce3.pi.infn.it");	LSF hostfile
CeRequirements = "wholenodes==\"true\" && hostnumber==1";	csn4wn110 csn4wn110 csn4wn110
openmp.sh export OMP_NUM_THREADS=8	csn4wn110 csn4wn110 csn4wn110
./myomp	csn4wn110 csn4wn110

Hybrid MPI-openMP job

Hybrid parallel programming on the grid is enabled too.

- This example requires 2 MPI ranks. Each MPI process will launch 8 openMP threads -



Hybrid MPI-openMP job with affinity

The openMPI rankfile supports the CPU affinity

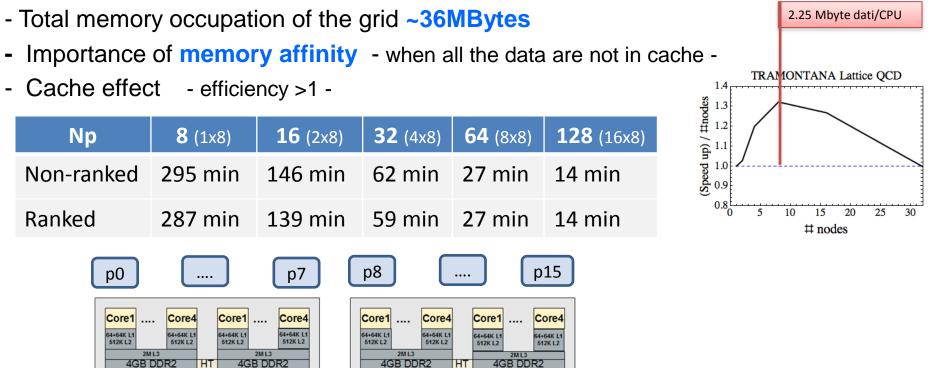
- binding of an MPI process to a specific core or range of cores -
- This example requires 4 MPI ranks. Each MPI process will launch 4 openMP threads -

MPI job submission via MPI-start

If a higher level of abstraction is needed (i.e. don't know where the MPI job will land) we have to use the MPI-start wrapper. MPI-start is the submission method recommended by the EGEE MPI-WG.

The current version of **mpi-start is not able** to manage hybrid mpi-openMP application and memory/CPU affinity.

- This example executes 16 MPI ranks (2 whole nodes) -


```
JDL:
Executable = "mpistart-wrapper.sh";
Arguments = "mympi OPENMPI";
InputSandbox = {"mpistart_wrapper.sh","mpi-hooks.sh","mympi.c"};
#Requirements =(other.GlueCEInfoHostName == "gridce3.pi.infn.it");
CeRequirements = "wholenodes==\"true\" && hostnumber==2";
```

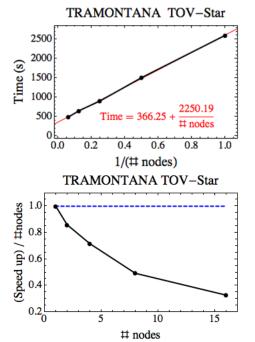
- mpistart_wrapper.sh is a standard script. Modification not needed- mpi-hooks.sh includes pre and post execution scripts

Results of real applications: USQCD

Hybrid-Montecarlo simulation of the Pure Gauge SU(3) on a 32x32x32x8 lattice (2000 sweep) using the publicly available **USQCD collaboration** "chroma" library (<u>http://usqcd.jlab.org/usqcd-docs/chroma/</u>). - Thanks to A. Feo, (Turin U.) -

- Pure MPI code

Infiniband DDR Switch


Results of real applications : NumRel

Evolution of a stable general relativistic TOV-Star using the Einstein Toolkit consortium codes (<u>http://einsteintoolkit.org/</u>). - Thanks R. De Pietri, Parma U. Hydro-dynamical Simulation of a perfect fluid coupled to the full Einstein Equations (dynamical space-time) on a 3-dimensional grid with 5-level of refinement spanning an octant of radius 177 *km* with a maximum resolution within the star of 370 *m*.

- Hybrid MPI-openMP code

- Total memory occupation of the grid ~8GByte.
- The code is NOT full-parallelized but large memory request require parallelization.

#node	Np=8x#	Np=4x#	Np=2x#	Np=#	Np=2x#
	Nt=1	Nt=2	Nt=4	Nt=8	Nt=4 (rank)
1	2291.90	2934.21	3126.73	3360.96	2608.08
2	1438.72	1619.83	1797.30	2061.55	1516.04
4	1007.71	993.79	1007.71	1268.79	909.36
6	767.45	783.07	694.31	927.35	745.63
8	663.03	638.81	694.31	753.79	661.37
16	461.85	448.77	484.20	552.89	497.78

Conclusions and future work

The Cluster is ready for use. Now we need dissemination events/activity:

- Wiki page: http://wiki.infn.it/cn/csn4/calcolo/csn4cluster/
- Cluster inauguration (April 2011)
- Training course (date subject to fund availability from INFN Administration)

This model **can be extended to other MPI sites**, after the integration of the Granularity attributes in gLite.

MPI-start should support affinity:

The current version of MPI-start in not able to manage hybrid MPI-openMP application and memory/CPU affinity.

- Management of CPU/memory affinity is important: the migration of process with respect to allocated memory has an impact on performance.
- Hybrid MPI-openMP applications needs an adapted MPI-start able to suggest the right number of threads.

Thank you for your attention!