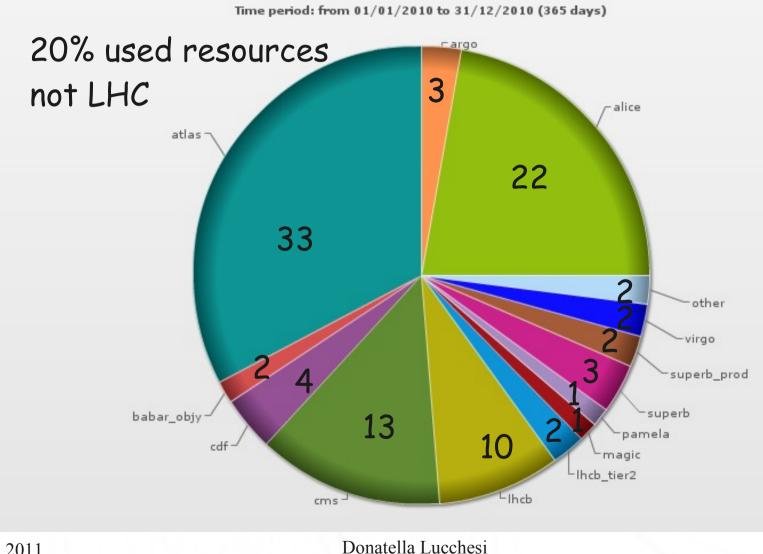

Esigenze di Calcolo dei Futuri Esperimenti

Donatella Lucchesi Universita' e INFN Padova

Workshop della Commissione Calcolo Stato e Prospettive del Calcolo Scientifico Legnaro 16-18 febbraio 2011

Feb 17, 2011


Tier 1 Computing Assigned/Used

2

Tier 1 Computing Usage 2010

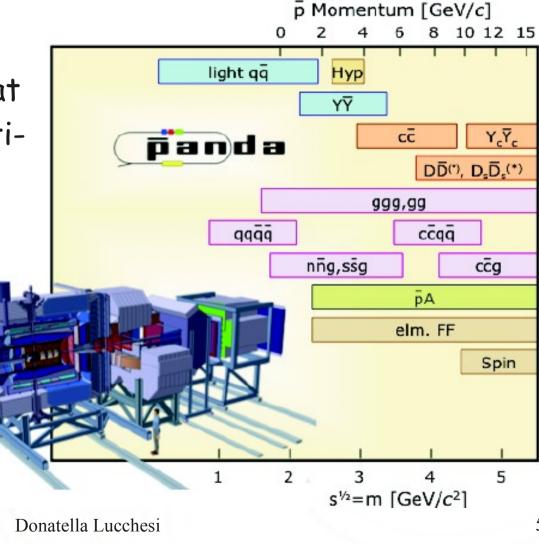
Global accounting: wct_hep_day

New INFN Experiments that need Grid Computing

INFN provides computing not only for LHC and it will do in the future for experiments:

- Nuclear Physics: PANDA, AGATA
- Particle Physics without accelerators: AMS
- Particle Physics with accelerators: NA62, SuperB

I did my best to collect as many information as possible, if I miss something, my apologies.

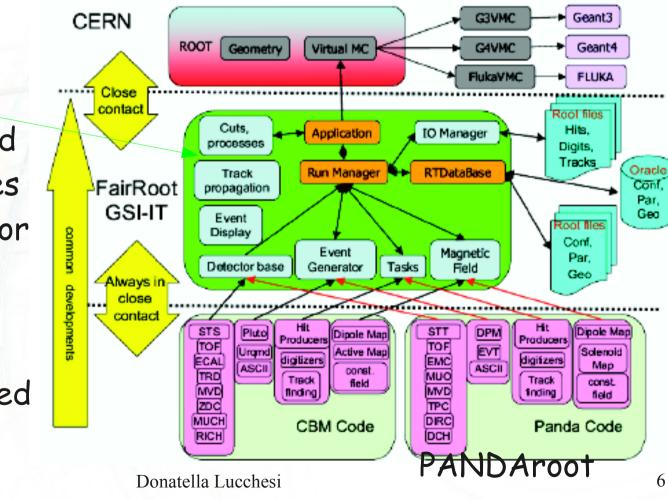

Nuclear Physics Experiments: PANDA

antiProton ANnihilations at DArmstadt

Study strong interaction at FAIR, the Facility for Antiproton and Ion Research, laboratory of Darmstadt. Data taking in 2016.

Detector:

-Target spectrometer -Forward spectrometer



PANDA Code Infrastructure

Software infrastructure, PANDAroot, based on FAIRroot

FAIRroot: -inherit ROOT and MC functionalities - used for detector simulation and offline analysis

Monitor tool based on MonALISA

PANDA Computing Model

PANDAroot runs on several platforms \rightarrow GRID Currently expanding AliEN2 GRID network in collaboration with Alice

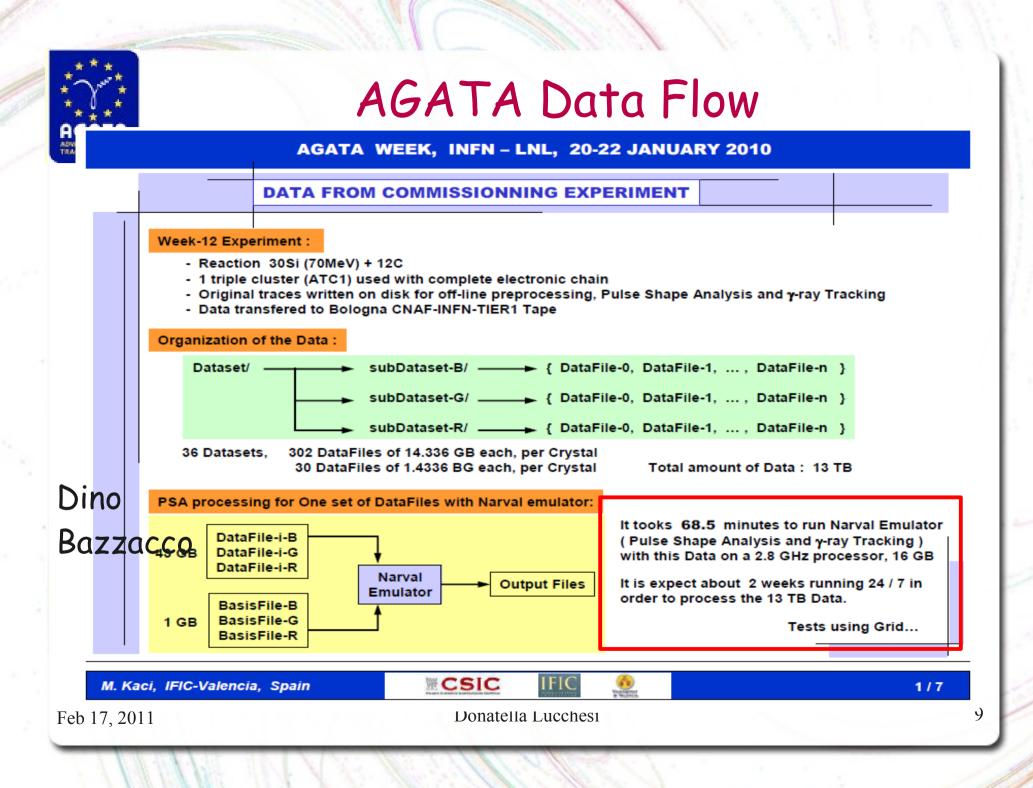
Complete simulation and analysis chain tested successfully on GRID, 10 sites at the moment, we can expect request in Italy.

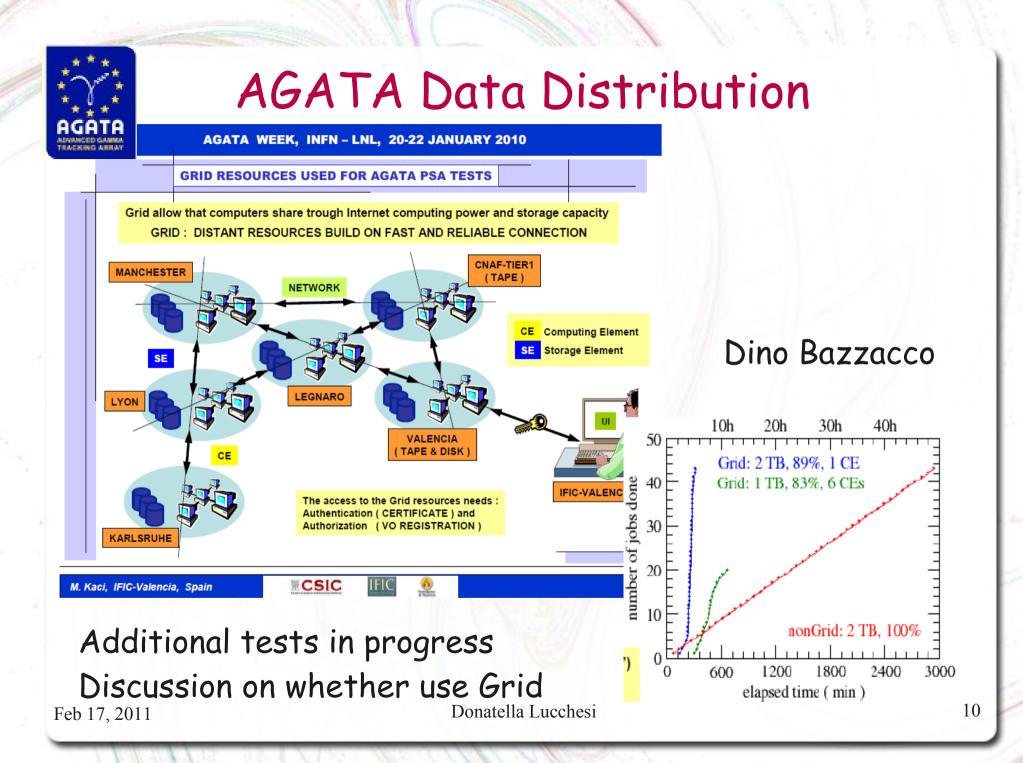
Nuclear Physics Experiments: AGATA

A 4π gamma spectrometer of Ge detectors to study nuclear **Detectors**

Data analysis consists: Pulse Shape Analysis to find gamma position in each detector

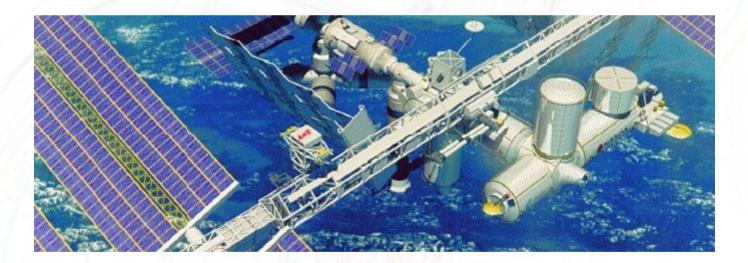
Real time analysis on Legnaro farm Data saved at CNAF and Lyon and accessed by users for analysis


Ge crystals: Hexaconical shape 90-100 mm long 80 mm max diameter 36 segments Al encapsulatation: 0.6 mm spacing 0.8 mm thickness


Triple clusters: 3 encapsulated crystals Al end-cap: 1.5 mm spacing 1.5 mm thickness 111 cold FET preamplifiers

Distance between faces of crystals: in same cluster ~3 mm in adjacent clusters ~9 mm

Donatella Lucchesi

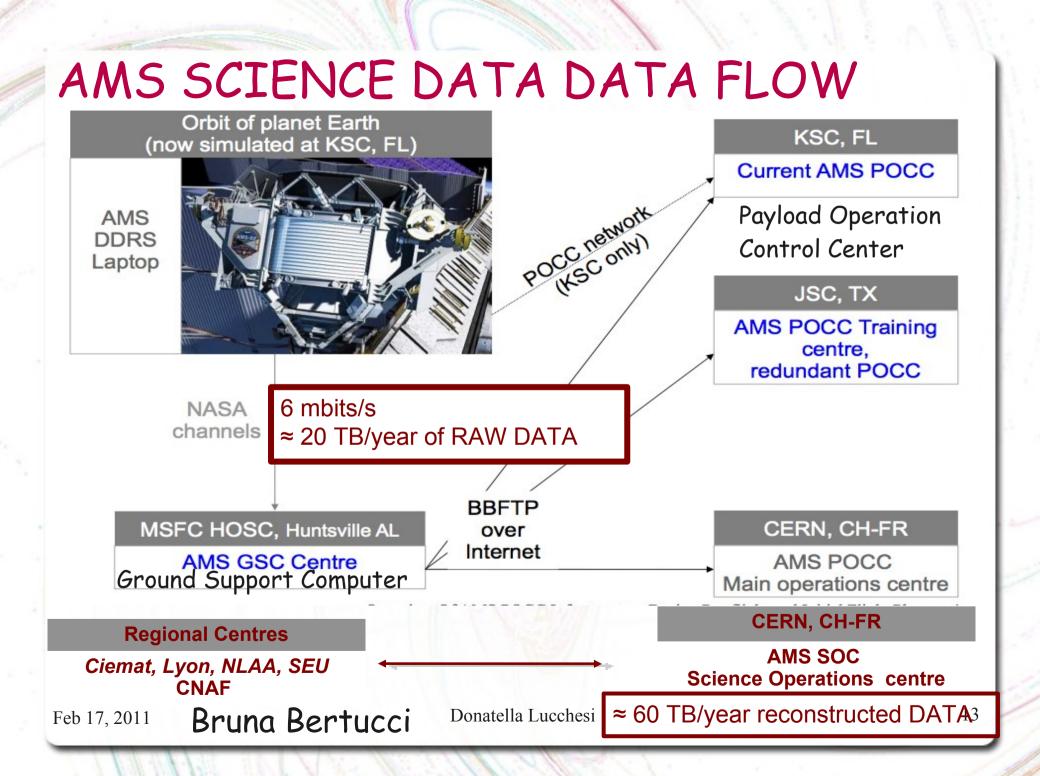

Total weight of the 60 clusters of the AGATA-180 configuration ~2.5 tons Mounted on a self-supporting structure

Particle Physics experiments w/o accelerator: AMS-02

The Alpha Magnetic Spectrometer is a state-of-the-art particle physics detector designed to operate as an external module on the International Space Station for >10 yrs.

Bruna Bertucci AMS-02

AMS conceived to search for primordial anti-matter (antinuclei), indirect signal of dark matter (positrons, antiprotons, gammas) and precision measurements of cosmic radiations.


✓ Detector integration ended in Jul.2010

✓ Current activities : integration with the shuttle/ISS HW interfaces and end-to-end tests to verify shuttle/ISS data/electrical interfaces

Expected launch date April 19,2011STS134 shuttle flight.

Italy in AMS-02: 25% of the international collaboration co-piship, responsibility of 4 (TRACKER, TOF, ECAL, RICH) out of 6 sub-detectors (ACC, TRD) AMS-02 Italy & Computing : CNAF as regional center

Feb 17, 2011

AMS-SOC @ CERN

Bruna Bertucci

Raw data reconstruction (and future Re-processings)
 Science Data Quality Monitor
 Data Analysis
 MC production

4) MC production

Regional Centers

1) MC production
 2) Data Analysis
 3) Support in Re-processings

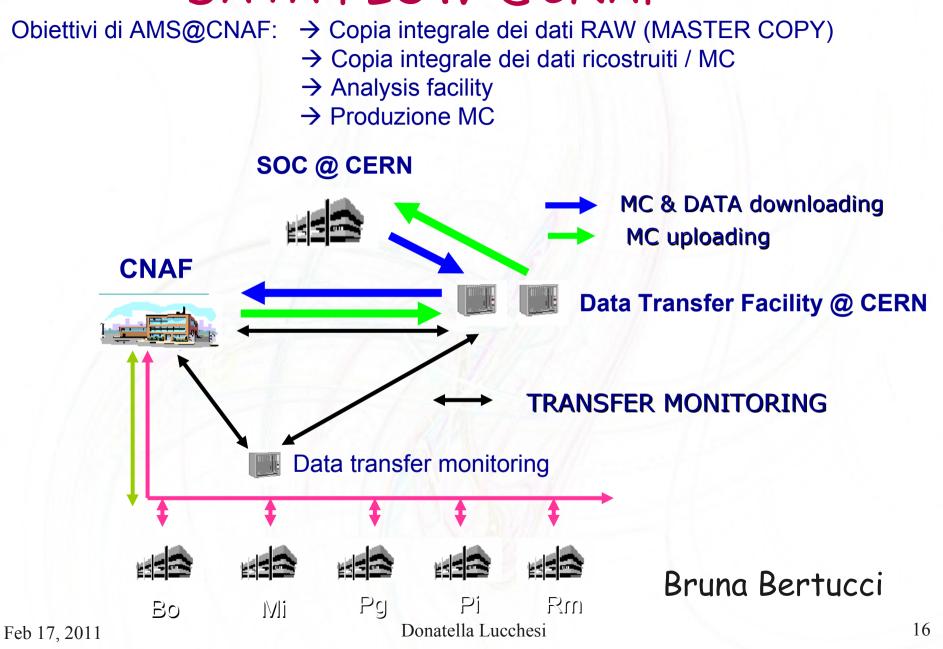
at CNAF : also MASTER COPY of RAW Data

Feb 17, 2011

Science Operations Center

Current Status : Farm in B892 @ CERN

Bruna Bertucci


- ~100 Intel 2GHz cores;
- ~300 TB of disk arrays;
- Direct data access protocols (~1GByte/s);
- Sufficient capacity to process AMS data for the first 6 months of operations
- Reduced capacity for analysis
- > No capacity for MC production after launch

Significant upgrade foreseen in 06/2011: SOC in CERN computing centre.

- \rightarrow 1000 Intel 2GHz cores
- \rightarrow 1PB of disk arrays

Ongoing work on test-bench to integrate production in the new environment. Feb 17, 2011 Donatella Lucchesi 15

DATA FLOW @CNAF

Current Status @CNAF

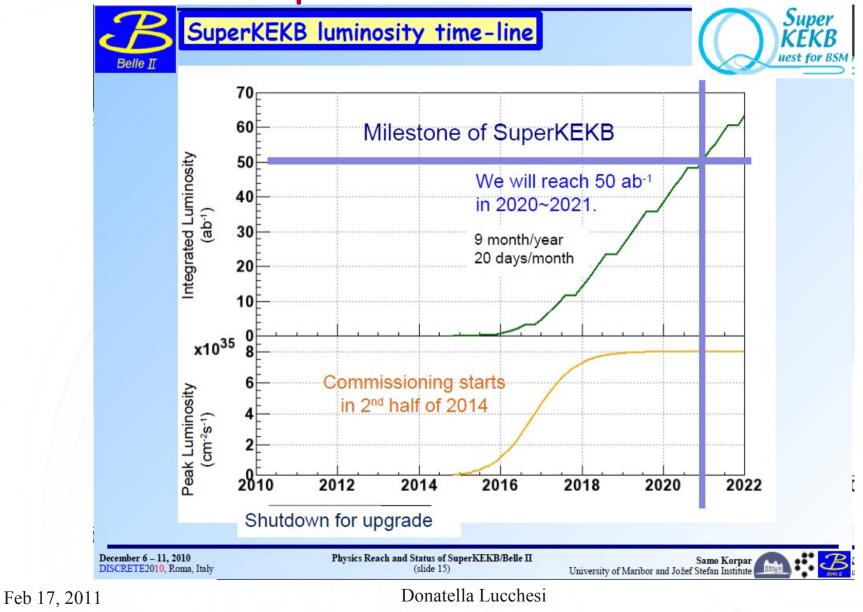
Activities at CNAF started in 2003:

Bruna Bertucci

- few resources : mainly for MC production and to be prepared to operate in the CNAF environment
- ✓ Data transfer : ok tested
- ✓ Storage : ok

Raw data copy : 50 TB of tape allocated and infrastructure tested. Reconstructed data : 93 TB disk allocated for 2011, infrastructure tested

CPU: 432 HS06 allocated for 2011


- → Environment : ok , AMS-SW running.
- \rightarrow queues and their priorities to be optimized
- → more resources needed (? most probably): depending on the SOC functionality and availability of NLAA / SEU regional centers for MC production.

Particle Physics experiments with accelerator: SuperB

 B-factories improved Standard Model testing: high precision determination of Cabibbo-Kobayashi-Maskawa
 Further constrains on Standard Model in this sector need factor 50-100 more data respect to B-factories (50-75 ab⁻¹)
 This can be achieved with a very high luminosity machine: L≥ 10³⁶ cm⁻²s⁻¹ energy E= Y(4s)-Y(5s)

Two machines:
 SuperKEKB in Japan, no Italian collaborations
 SuperB in Italy

SuperKEKB schedule

SuperB accelerator schedule Accelerator Schedule Piano Triennale

ID	Task Name	Duration	2010		2011		2012		2013		2014		2015		2016
			H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1
1	Approvazione	0 wks	1 <u>-</u>	5/3			-								-
2	Infrastrutture	149 wks		•							1		1		1
3	Progettazione edilizia civile	52 wks			. 1						-		-		-
4	Gara edilizia civile	19 wks	:		: [¶		1				:		1		1
5	Costruzione Tunnel, Edifici, e Sala sperim.	78 wks			: -										-
6	Progetto/gara Linac, DR, & BTL	104 wks	1 1				1								1
7	Progetto e gara Elettr., Raffredd., Cryo.	104 wks	1 🗄										1		1
8	Progetto & Costruzione Acceleratore	260 wks		_			1						-		
9	Progettazione acceleratore	78 wks		•									-		-
10	Costruzione magneti	104 wks	1 🙃								1		1		1
11	Costruzione sistema vuoto	104 wks	4-					-					-		
12	Costruzione supporti	104 wks			-					1			1		-
13	Costruzione utilities	104 wks	1 :								-				1
14	Costruzione controlli	104 wks									1		1		
15	Costruzione RF	104 wks	1 :						: L						÷
16	Costruzione alimentatori	104 wks			-						:		:		-
17	Installazione Acceleratore	117 wks							I WE				-		1
18	Installazione nel tunnel	110 wks	1 :		-									1	-
19	Installazione Zona Interazione	52 wks	:						: L				1		
20	Installazione Linac, DR, & BTL	65 wks			1							h			1
21	Commissioning Acceleratore	78 wks	1 :		1		1				1	<u> </u>			
22	Commissioning Linac	39 wks	1 :		1							Ť	÷ .	L	1
23	Commissioning Fasci	26 wks	1 :								1				<u>1</u>
24	Prime collisioni	0 wks			-		-								12/4

FForti - Stato di SuperB Search site committee formed

Feb 17, 2011

Donatella Lucchesi

25 Gennaio 2011

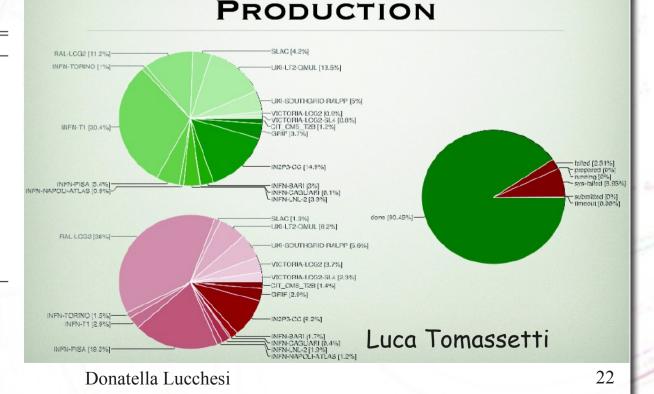
SuperB Computing: data model

Computing Model in preparation, information from Data format: arXiv:1007.4241v1 [physics.ins-det]

- 1. Raw data
- 2. Full reconstructed data
- 3. Mini recons. data: compact form with noise suppression
- 4. Micro recons. data: only information useful for analysis

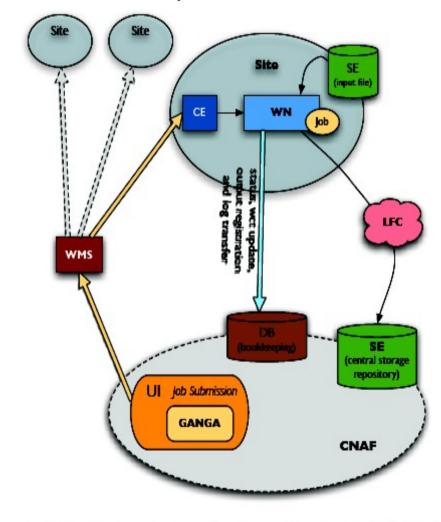
C	Parameter	typical Year
Computing resources needed	Luminosity (ab^{-1})	15
	Storage (PB)	
	Tape	113
For comparison CMS in 2011:	Disk	52
	CPU (KHep-Spec06)	
	Event data reconstruction	210
550 Kheps-Spec06	Skimming	250
112 PB	Monte Carlo	670
	Physics analysis	570
	Total	1700

Feb 17, 2011


SuperB: Site Usage

Big effort on simulation:

Fast simulation: simplified detector models and parametric resolution function


Full simulation: detailed detector simulation based on GEANT4
FASTSIM SUMMER

0	2
Site name	Grid flavor
CNAF Tier1, Bologna, Italy	EGEE/gLite
Caltech, California, USA	OSG/Condor
SLAC, California, USA	OSG/Condor
Queen Mary, London, UK	EGEE/gLite
RALPP, Manchester, UK	EGEE/gLite
GRIF, Paris/Orsay, France	EGEE/gLite
IN2P3, Lyon, France	EGEE/gLite
INFN-LNL, Legnaro, Italy	EGEE/gLite
INFN-Pisa, Pisa, Italy	EGEE/gLite
INFN-Bari, Bari, Italy	EGEE/gLite
INFN-Napoli, Napoli, Italy	EGEE/gLite

SuperB: distributed production

Simulation production work-flow

- 1. input file to remote SE Distribution
- 2. job submission via GANGA
- 3. output stage out to CNAF repository

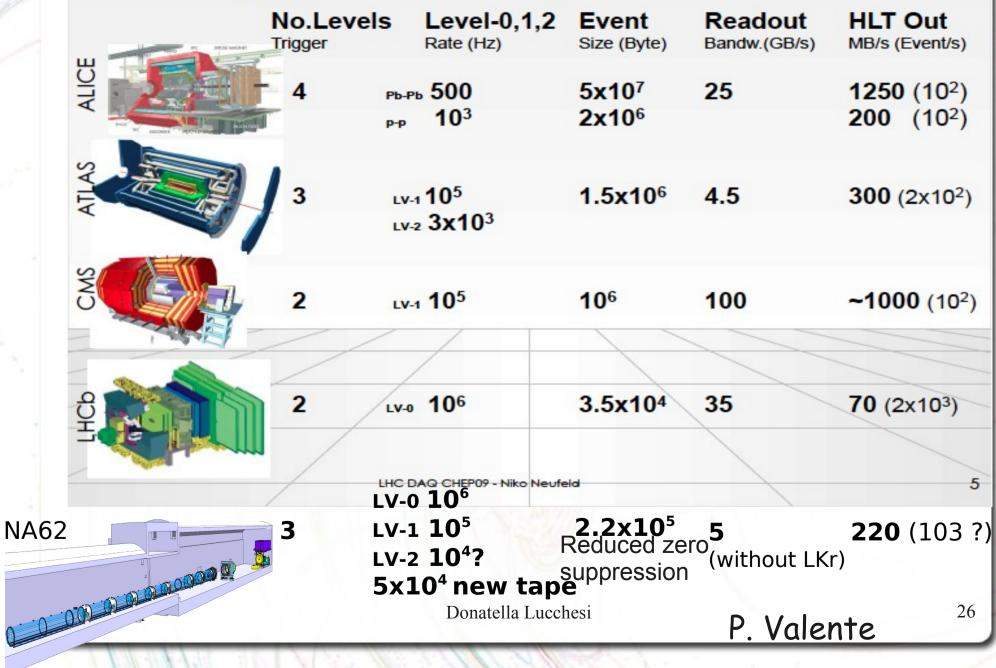
SuperB: Toward the Computing Model

List from Fabrizio Bianchi superB workshop Caltech

- Efficient use of multi-core architectures
- Distributed storage
- Job management
- Metadata management
- Event store
- Framework
- Digitization code
- Reconstruction code

Computing funding is part of the project funding

Data


Measurement of the very rare $K^+ \rightarrow \pi^+ v \overline{v}$ decay (~10⁻¹¹) to determine with 10% precision $|V_{+}|$ Specific analysis task Super-THIN Analysis Data format: THIN Specific analysis task Skimming Raw data: from detector Calibration task RECO Calib data: calibration Reconstruction Reco data: output of reconstruction Thin data: skimmed events Calibration task CALL RAW Super-thin data: more skimmed Meta data: Conf (run configuration) CONF Cond (run condition) TDAO Cost (calibration)

COST

COND

DCS

Trigger/DAQ parameters

NA62 Computing Model

NA62 computing room

CERN computing center

Off-site center

RAW

RAW

Replicate RAW offsite?

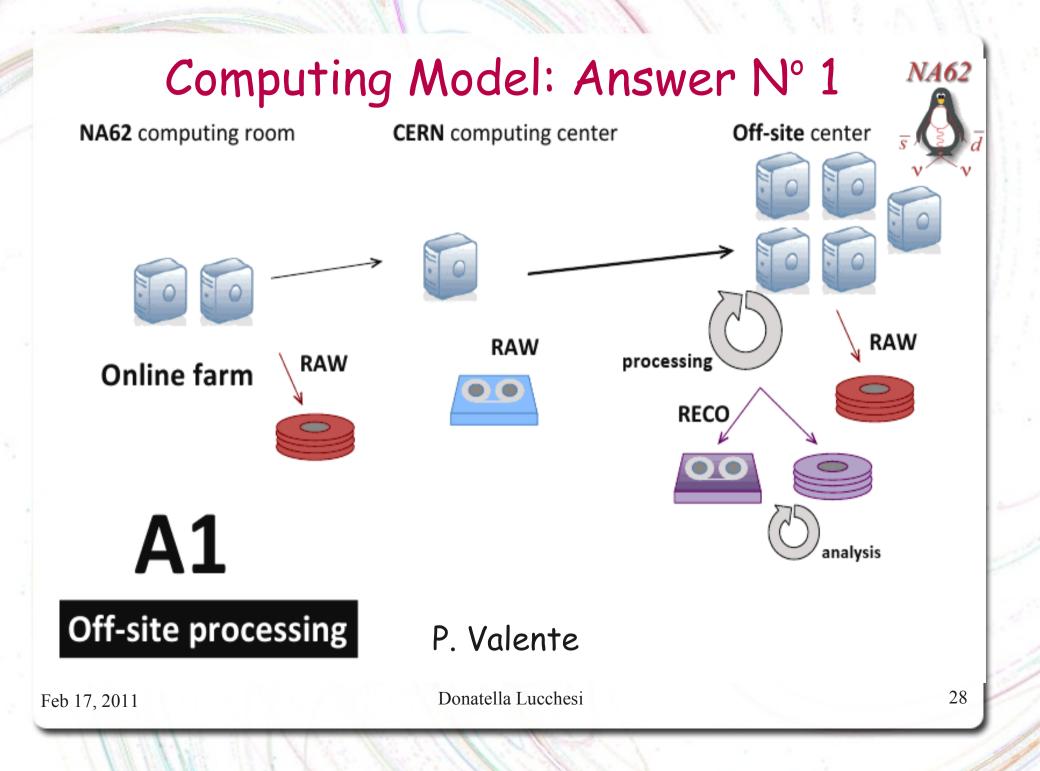
If the answer is "Yes"

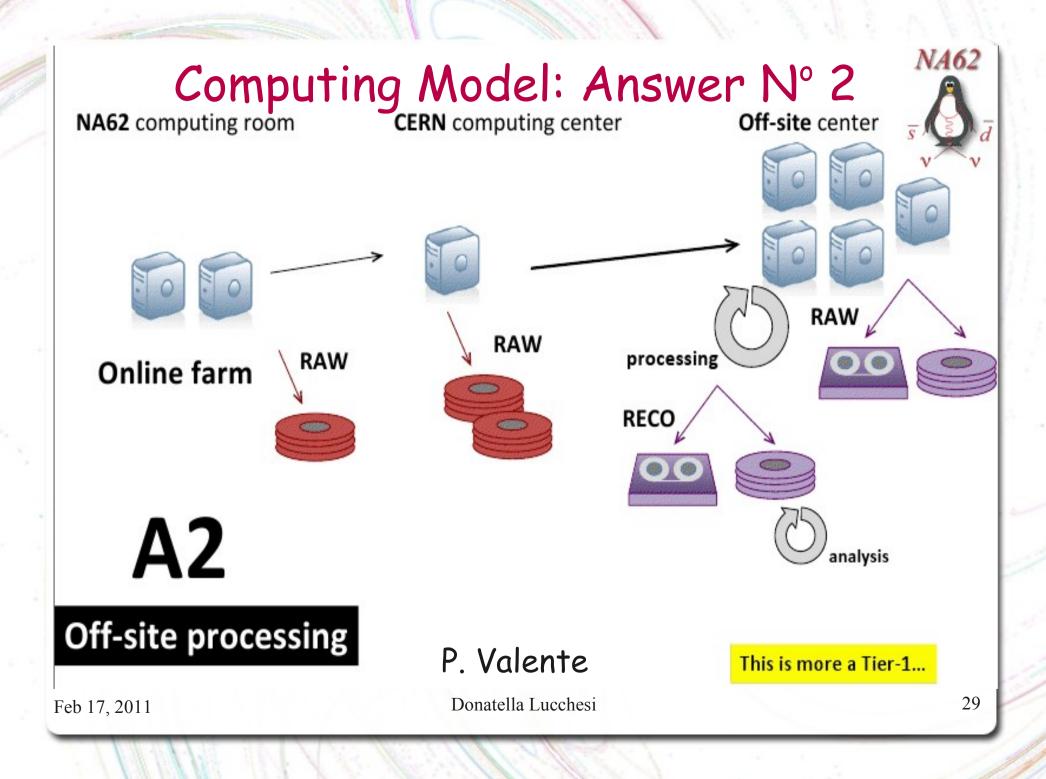
A. RAW need to be transferred if one wants to make use of off-site computing power not only for analysis purposes

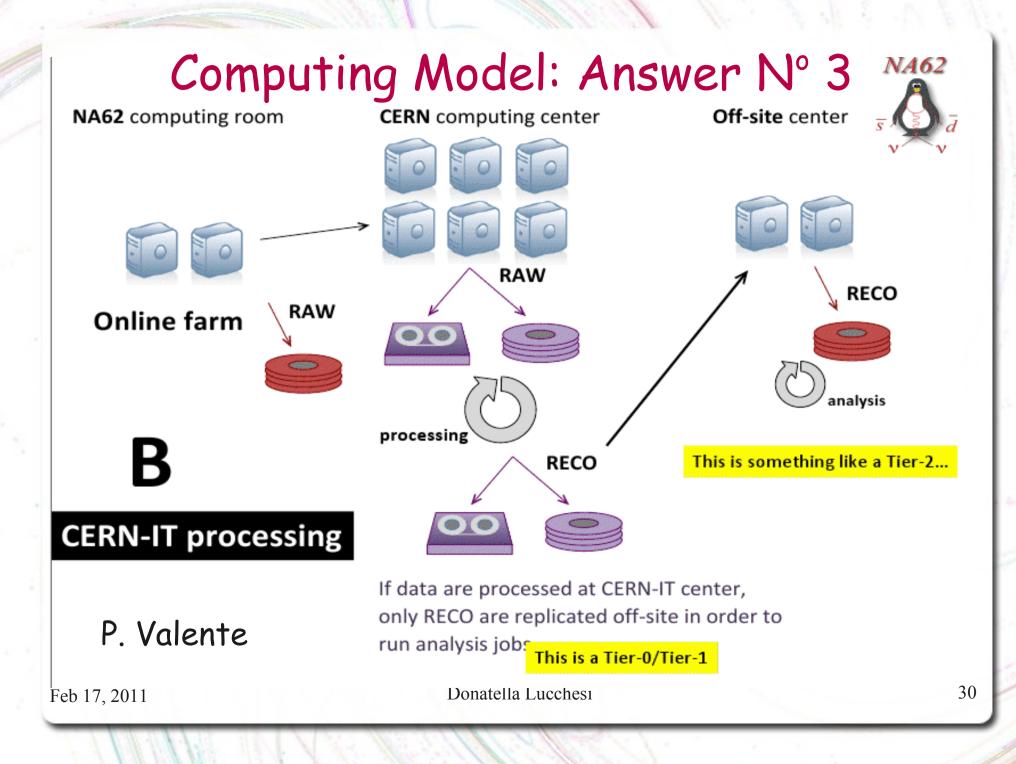
If instead the answer is: "No", the question is:

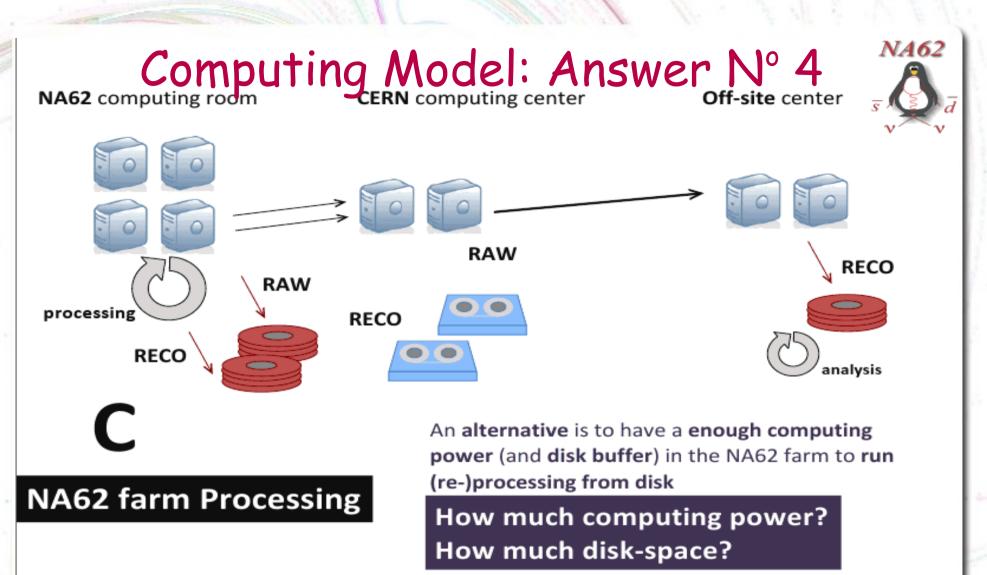
How to handle (re-)processing?

If RAW are recorded on disk&tape at CERN computing center:


B. the (re-)processing should run there


Donatella Lucchesi


RAW storage


Online farm

P. Valente Feb 17, 2011

Italy plays a big role in construction, it should do it also in analysis of P.

Feb 17, 2011

Donatella Lucchesi

31

P. Valente

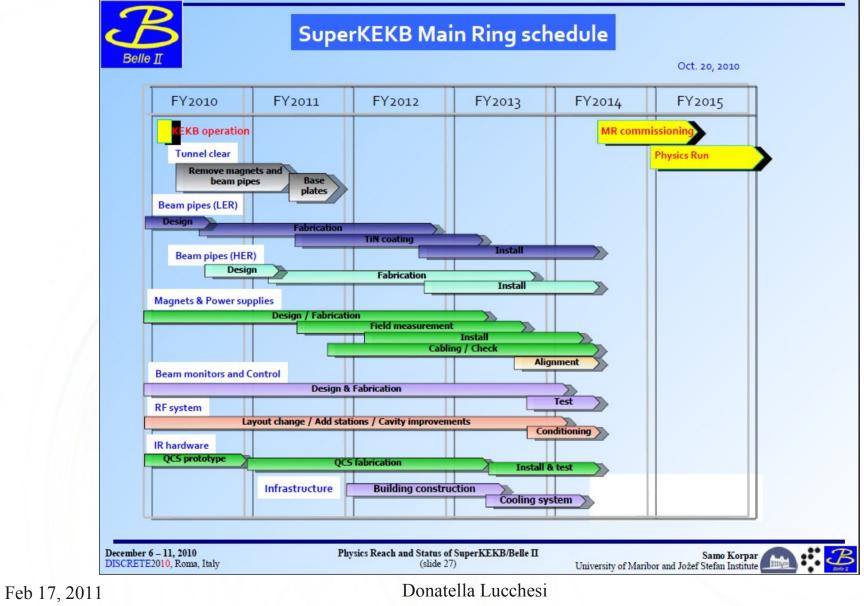
Summary

Several new experiments of nuclear physics, astro-particle physics and particle physics have a computing model compliant with the Italian infrastructure, some of them will have GRID-based infrastructure, others will use the resources in a simplified way.

All of them will need support for computing.

Dino Bazzacco, Bruna Bertucci, Fabrizio Bianchi, Giuseppe Cardella Paola Gianotti, Patrizia Rossi, Paolo Valente

BACKUP


Nuclear Physics: New Experiments

New activities at JLAB: upgrade computing facility at the Laboratory, everything done on local farm.

Proposed a new experiment: FARCOS: Femtoscope ARray for COrrelation and Spettroscopy

Computing model to be done, probably they will use local farm

SuperKEKB

35

SuperKEKB

Linac upgrade and DR construction schedule

FY2010 FY2011 FY2013 FY2014 FY2015 FY2012 Linac upgrade Low emittance e- gun Linac commissioning R&D Construction e+ new matching & L-band acc. R&D Construction Buildings 3-2T F injection tudy (A1 gun) DR jnct. Damping Ring **Tunnel & building** DR commissioning Base plan Design **Tunnel construction** Cooling **Building construction** system Magnets & Power supplies B&Q mag. tabricate Other magnets **Field measurement** Install Power supplies Beam transport and kickers Alignment R&D Fabrication Instal Alignment Beam pipes Fabrication Install Monitors, Control Fabrication Instal **RF** System cavity design cavity fabrication cavity install HP test > HP test HP&LLRF install

December 6 – 11, 2010 DISCRETE2010, Roma, Italy Physics Reach and Status of SuperKEKB/Belle II (slide 28)

Samo Korpar University of Maribor and Jožef Stefan Institute

Oct. 20, 2010

Feb 17, 2011

SuperB Detector schedule

Detector Schedule Piano Triennale

ID	Task Name	Duration	Y1		Y2		Y3		Y4		Y5		Y6		Y7
			H1		H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1
1	Approval	0 wks		5/3	1		1		1		1		i		i
2	Detector Design & Construction	182 wks			1					_					
3	Design SVT	52 wks	1	1		L							1		
4	Construct SVT	130 wks	1	L .							+	1			
5	Design DCH	52 wks	1	T	÷		i		i		i		i		i
6	Construct DCH	130 wks	1	11							+		1		ł
7	Design PID	52 wks	1	1		_							!		
8	Construct PID	130 wks	1	L.							+		1		
9	Design forward EMC	52 wks	1	1 -									1		
10	Construct forward EMC	130 wks	1	iL –		_					i I I		i –		i i
11	Design IFR	52 wks	1	1					-						-
12	Construct IFR	120 wks	1										ļ		
13	Detector Technical Design Report	0 wks	1			4/29									
14	Dismantle & Move Babar	91 wks		j.	÷.				i				i		İ
15	Design Tooling	26 wks	1	1			1		i i				i –		i i
16	Dismantle Babar	52 wks	1	1 1			-		-						
17	Component transportation	26 wks	1			-)	•		-						
18	Detector Installation & Commissioning	200 wks	1											_	
19	Installation steel	52 wks	1	i	i								i		i
20	Installation magnet	13 wks	1	1	1								1		ł
21	Installation IFR	20 wks	1	-			-						!		
22	Installation EMC	8 wks	1								The last		1		
23	Installation PID	8 wks	1										1		
24	Installation DCH	8 wks	1	i	i		i		i			h	i		i
25	Installation SVT	8 wks	1	1									1		-
26	Commissioning	26 wks	1									1	• ••		!
27	Cosmic Ray test	26 wks													
28	Commissioning on beam	15 wks	1	1									1	1	
29	Detector ready for collision	0 wks	1	i	i		i		1				i	- 4	11/
		÷												Ť	
	Task	Miles	tone	•	•		Ext	emai Ta	sks						
	SBF_schedule_v1.2 Split	Sum	many				Evi	emal Mil	ectone						

Feb 17, 2011