
LATTICE QCD computations on GPUs

Massimo D’Elia
.

Universit à di Genova & INFN

.

Stato e Prospettive del Calcolo Scientifico - Laboratori Naz ionali di Legnaro
16-18 febbraio 2011

1 – Lattice QCD and GPUs

• Lattice QCD is among the most computationally demanding res earch topics in

theoretical physics.

• By its continuous need for powerful computational resource s, it has often stimu-

lated the development of new hardware facilities for High Pe rformance Computing

(partial list: APE machines series, QCDOC, QPACE, ...)

• The aim is the numerical computation of of Quantum ChromoDyn amics, the the-

ory of strong interactions, by evaluating its Feynman path i ntegral discretized on

a space-time lattice.

• The final goal is uncovering the non-perturbative propertie s of QCD, including

confinement, chiral symmetry breaking, the computation of S tandard Model pa-

rameters and the structure of the QCD Phase Diagram.

The main numerical task is the sampling of gauge field configur ations by dynamic Monte-Carlo:

• Stochastic variables: 3×3 unitary complex matrices Uµ(n) (gauge link variables)

associated to each elementary link of a (typically cubic) 4d space-time lattice of

spacing a. 4 Lx Ly Lz Lt matrixes on the whole How big our lattice?

a ≪ shortest scale ; Lsa ≫ largest scale =⇒ a < 0.1fm ; Ls ∼ O(102)

• Equilibrium distribution: DUe−SG[U] detM [U]

– SG (pure gauge action): local term taking into account gluon-gluon interactions

– detM [U] is the determinant of the fermion matrix: non-local term which takes

into account dynamical fermion contribution. M is a N × N sparse matrix

N = Lattice sites · N of Colors · Dirac components up to ∼ 108 − 109

The typical algorithm: Hybrid Monte Carlo

• Requires auxiliary variables: DUe−SG[U](det M [U])2 → DUDHDΦ†DΦ e−H

H = SG[U] − Φ†(M [U]M [U]†)−1Φ + 1
2

∑

n,µ TrH2
µ(n)

• Pseudofermion fields Φ and conjugate momenta Hµ updated by global heatbath

• Most time taken by Uµ and Hµ evolution (Molecular Dynamics eqs, dH/dt = 0)

Integration errors corrected by a Metropolis accept-rejec t step

Uµ(n, t + δt) = eiδtHµ(n,t)Uµ(n, t)

Hµ(n, t + δt) = Hµ(n, t) + δtḢµ(n, t)
U(t), H(t)

U’(t’), H’(t’)

• Heaviest task during trajectory: matrix inversion (MM †)−1Φ, needed for Ḣµ:

– A conjugate gradient algorithm is used typically

– The condition number of MM † rapidly increases at low quark masses

– mu, md ≪ ΛQCD hence the inversion can take more then 90% of total time

– Matrix inversion also needed to compute observables on the sampled gauge

configurations (e.g. quark propagators)

HOW COSTLY?

Latest estimate, based on improved algorithms and discreti zations, of the numerical

cost for 100 statistically independent gauge configuration s for 2 Wilson fermions:

L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio, N. Tanta lo 2006

0.03

(

Ls

3 fm

)5 (

Ls

2Lt

)(

0.2

m̂/ms

) (

0.1 fm

a

)6

TFlop · year

- Putting in reasonable numbers one easily reaches order of 10 − 100 Tflops · year.

- Numbers grow easily for specific requirements (heavy quark physics, exact chiral

symmetry via Ginsparg-Wilson fermions) going up to 1-10 Pet aflops · year.

- Such power is or will soon become available in the next futur e, but only for a few

large groups. Problem is not only hardware but also power con sumption.

In this context, similarly to many other computational field s, the advent of GPUs rep-

resents an ongoing breakthrough. It makes possible the avai lability of enough com-

putational power at low cost to a large number of groups and is therefore essential

for the development of new ideas and of progress in the field.

The first seminal paper on the implementation of lattice QCD o n GPUs:

Egri et al. hep-lat/0611022 “Lattice as a video game”

OpenGL was used as a programming language. Sustained perfor mance of ∼ 30

GFLOPs for the Wilson kernel (fermion matrix multiplicatio n) on an NVIDIA 8800 GTX.

The advent of the CUDA programming language has brought many other groups into

the GPUs play. This is only a partial list of contributions

• C.Rebbi et al. (LATTICE08) “Blasting through Lattice Calculations using CUDA” Wilson kernel 100

GFLOPs

• Kenji Ogawa (TWQCD) (Workshop GPU supercomputing 2009, Taipei) Wilson kernel 120 GFlops

• K. Ibrahim et al. “Fine-grained parallelization of LQCD kernel routine on GP U” Speedup 8.3x on

8800GTX (Wilson kernel)

• M. A. Clark et al., arXiv:0911.3191 “Solving Lattice QCD systems of equations using mixed preci -

sion solvers on GPUs” up to 150-200 Gflops for Wilson kernel on a GeForce GTX 280

M. A. Clark et al., arXiv:1011.0024 “Parallelizing the QUDA Library for Multi-GPU Calculation s in

Lattice QCD” up to 4 Tflops for Wilson kernel on a cluster of 32 NVIDIA GTX 285

• Plus other ∼ 10 unlisted contributions to the last LATTICE 2010 Conference in Sardinia.

2 – OUR IMPLEMENTATION

Two years ago we have decided to port our code for the simulati on of QCD with stan-

dard staggered fermions to GPU

C. Bonati (Pisa) , G. Cossu (KEK, Japan) , A. Di Giacomo (Pisa), M. D’E. (Genova), P. Incardona (Genova)

People in red have done or are doing most of the heavy work.

C. Bonati, G. Cossu, M. D’E. and A. Di Giacomo, “Staggered fer mions simulations on GPUs,” arXiv:1010.5433

Our present installation

• 6 S1070 units (= 24 C1060) up and running in Pisa

• 2 S1070 units up and running in Genoa

• 4 C2050 (Fermi) cards to be installed in Genoa

Specification of the NVIDIA cards used for our benchmarks

GPU Cores Bandwidth Gflops (peak) Gflops (peak) Device Memory

GB/s single double GB

Tesla C1060 240 102 933 78 4

Tesla C2050∗ 448 144 1030 515 3

∗ thanks to Edmondo Orlotti and Massimo Bernaschi for making a C2050 card available for our tests

Remember that a GPU is made of many cores

having access to a global device memory with a

bandwidth O(100) GB/s. This is one first bottleneck

for problems with a low computations/data loading

ratio, such as lattice QCD (typical performances

are around 10%).

A more serious bottleneck is the connection of

the device memory to the host RAM, which goes

through a PCI express bus at 5 GB/s

OUR IMPLEMENTATION - general features

• Most lattice QCD applications use GPUs as accelerators for s pecific demanding

parts of the code, e.g. the matrix inversion or some expensiv e measurements.

• Our philosophy has been that of reducing as much as possible t he CPU/GPU data

exchange by putting most of the Monte-Carlo chain on the GPU.

• That has been done gradually (first we have put the inverter on the GPU, then grad-

ually every other piece). Asymptotically the CPU becomes no t more than a mere

controller of the GPU flow

GPU is the computer ...

• Single precision floating point arithmetic always outperfo rms the double one (al-

though in the Fermi architecture such problem is strongly re duced).

Therefore we make use of double precision only when strictly necessary.

Sketch of our implementation

perform Metropolis accept/reject (CPU)

U(t), H(t)

U’(t’), H’(t’)

momenta and pseudofermions created on CPU
gauge field, momenta and pseudofermions uploaded on GPU
initial energy computed in double precision on GPU

compute final energy in double precision

download final configuration from GPU

whole evolution trajectory runs on GPU in single precision
negligible CPU/GPU communication at this stage

Everything is implemented by a homemade C code supplemented with CUDA kernels

OUR IMPLEMENTATION - fine structure

MΦ (Dirac Operator) Kernel

• Parallelization: each thread reconstructs MΦ on one site i.e.
∑

µ Uµ(n) × Φ(n + µ̂)

• Gauge and pseudofermion fields from CPU to threads:

– Only first two rows of each SU(3) gauge matrix are passed from host → device global (texture)

memory and from there to threads, to reduce memory exchange. Last row reconstructed during

computation.

– Reordering of gauge variables stored on global memory nece ssary to guarantee coalesced

memory access (contiguous threads read contiguous memory locations). Th is is strictly nec-

essary to avoid access latencies which disrupt performance

– pseudofermions to global memory with reordering as well

u11(1) u11(2) u11(3) · · · · · · u12(1) u12(2) u12(3) · · · · · ·

· · · u22(1) u22(2) u22(3) · · · · · · u23(1) u23(2) u23(3) · · ·

Figure 1: Gauge field storage model adopted to achieve coales ced memor access. All uij elements of

gauge matrixes are stored contiguously.

OUR IMPLEMENTATION - Inverter performance

Staggered Dirac operator kernel performance figures on a C10 60 card (single precision).

Lattice Bandwidth GB/s Gflops

4 × 163 56.84 ± 0.03 49.31 ± 0.02

32 × 323 64.091 ± 0.002 55.597 ± 0.002

4 × 483 69.94 ± 0.02 60.67 ± 0.02

Note that we reach sustained 60 GFLOPs (7% performance) and 7 0 GBytes/s (70 % bandwidth peak)):

no much room for further improvement. Similar numbers are ac hieved by other groups.

Main reason: the staggered fermion kernel needs more than 1 transferred b yte for each floating point

operation.

The situation is better by about a factor 2 for Wilson fermion s.

Global performance
We have tested our code in two different regimes: 2 light flavo rs (amq ≃ 0.01) and 2 heavy flavors

(amq = 1), corresponding to a different incidence of the Dirac kerne l performance.

NVIDIA C1060 time gains over CPU and apeNEXT.

high mass low mass

spatial size 32 48 64 16 32 48

Opteron (single core) 65 75 75 40 50 85

Xeon (single core) 50 50 50 15 25 30

apeNEXT crate ∼3 ∼1

Same for NVIDIA C2050 (same code as for C1060, no specific C205 0 improvement).

high mass low mass

spatial size 32 48 64 16 32 48

Opteron (single core) 115 130 140 65 75 140

Xeon (single core) 85 85 100 30 40 50

apeNEXT crate ∼6 ∼2

Run times on different architectures. For the Opteron and Xe on runs a single core was used.

STABILITY:

We have been running a Monte-Carlo chain continuously on a C1 060 for more than

100 days without a crash

3 – Production Runs

• Our code is running for production on our installation since last summer.

• Main topics: QCD phase diagram and confinement, nature decon finement transi-

tion at zero and non-zero baryon density, QCD in background m agnetic fields.

• First production results: C. Bonati, G. Cossu, M. D’Elia, F. Sanfilippo “The Roberge-We iss end-

point in Nf = 2 QCD,” arXiv:1011.4515 (Exploration of the QCD phase diagram)

0 10000 20000 30000 40000 50000 60000 70000
RHMC trajectories

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Re(Pol)
Im(Pol)

0 10000 20000 30000 40000
RHMC trajectories

0

0.1

0.2

0.3

chiral condensate
〈 |L| 〉

4 months of run. Would have taken 2-3 years on our apeNEXT reso urces (and

likely published before by other groups)

• More results coming this year.

4 – Planned Future Developments

• Extension to multiGPU:

– Present code runs on a single GPU. Optimal for lattices as la rge as 483 × 4

– multiGPU extension unavoidable for large scale simulatio ns.

– Main difficulty: frequent communications in and out of the G PU unavoidable, but they go

through the PCI express bottleneck (5GB/s). Possible solut ions:

∗ Software: overlapping communications and computations (see e.g. M. A . Clark et al., arXiv:1011.0024,

they reach a 10× acceleration on a 32 GPU cluster)

∗ Algorithm: use algorithms which require minimal communication among d ifferent lattice

portions, like the Schwarz domain decomposition algorithm by Lüscher (see e.g. Osaki -

Ishikawa, arXiv:1011.3318, authors gain a factor 2)

∗ Improve Communications among GPUs: future CUDA features and dedicated communication

links (see talk by Davide Rossetti on APEnet)

– Starting collaboration on this topic with the APE group in R ome

• Porting our code also to OpenCL, in order to test different ha rdware possibilities

• Extension to dynamical overlap fermions:

needed to implement exact chiral symmetry on the lattice, th ey are one of the most

computationally demanding challenges for future simulati ons

