
Luca Ferraro Software e Sviluppi per le GPU

Software e Sviluppi per le GPU

Luca Ferraro

(l.ferraro@caspur.it)

Stato e Prospettive del Calcolo Scientifico

16-18 Febbraio 2011

Laboratori Nazionali di Legnaro (INFN)

Luca Ferraro Software e Sviluppi per le GPU

What is CASPUR

1

Luca Ferraro Software e Sviluppi per le GPU

Some Partnerships

2

• CNR-IPCF
• CNR-IRC
• CNR-ISAC
• CNR-ISM
• CNR-ISTM
• CNR-MDM
• ENEA
• HP
• IASMA – Fond. Mach
• IFO Regina Elena
• IIT
• INAF
• INGV
• Ist. Naz. Spallanzani

• INSEAN
• ISPRA
• ISS
• IZSLT
• Microsoft
• NuMIDIA
• NVIDIA
• Policlinico Umberto I
• SCIRE
• Sigma-Tau
• SNS di Pisa
• SISSA
• Telethon
• Ylichron

• AIA
• AlphaData
• ARPA
• CIRA
• CNMCA
• CNR-DPM
• CNR-DSV
• CNR-IAC
• CNR-ICB
• CNR-ICRM
• CNR-IMCB
• CNR-IMIP
• CNR-INFM
• CNR-INMM

Luca Ferraro Software e Sviluppi per le GPUFebrary 10, 2011 3

HPC: the Wrong Model

HPC Service
Center

User2

User1

User3
User4

User5

Luca Ferraro Software e Sviluppi per le GPU

What We Provide

4

 Code optimization

 Parallelization

 Scalable algorithms

 Scalable data management

 High performance data bases

 Workflow tuning

 Highly tuned HPC codes
• SCElib (CUDA Zone!), LBM/BGK,

CMPTool, NEMO

 Training
• Training on the job
• CASPUR’s Summer School
• 24+ intensive courses on a regular

schedule (corsihpc.caspur.it)
• Attended by ~450 people per year

 covered disciplines:

• Applied Mathematics

• Astrophysics

• Bioinformatics

• Chemistry

• Data Analysis

• Finance

• Fluid Dynamics

• Materials Science

• Optimization Theory

• Statistics

• ...

Luca Ferraro Software e Sviluppi per le GPU

CASPUR & GPUs

 Budget is drastically reduced over years

 Dominant costs of HPC:

• High-speed, low-latency interconnect

• Scalable storage and file systems

• System housing and cooling infrastructure

 Among all tested alternatives (FPGAs, exotic
accelerators,…), GPUs:

• while being reasonably easy to program

• enabled a jump from 177 MFlops/W to 800+ MFlops/W

• and enough widespread to limit investment risks

Luca Ferraro Software e Sviluppi per le GPUFebrary 10, 2011 6

Jazz Fermi GPU Cluster

192 cores Intel X5650 @ 2.67 GHz

14336 cores on 32 Fermi C2050 GPUs

QDR IB Interconnect (4GB/s)

14.3 TFlops

Peak performance

Peak green performance

10.1 TFlops

Sustained Linpack

785 MFlops/W

Luca Ferraro Software e Sviluppi per le GPU

GPU-ready Applications

Computational Chemistry
1. NAMD

2. Amber

3. GROMACS

4. DL-POLY

5. CP2K

Fluidodynamics
1. OpenFOAM

2. ACUSIM

Numerical Analysis
1. Matlab+GPU

Bioinformatics
1. CUDA-BLASTP

2. GPU-HMMER

3. CUDASW++

Many CUDA-enabled applications are installed and ready to use on the cluster:

Finance
1. QuantLib

Luca Ferraro Software e Sviluppi per le GPU 8

NAMD Performance on CPUs/GPU

Satellite Tobacco Mosaic Virus (STMV) with NAMD

This benchmark consists of 1,066,628 atoms

Parameters affecting performances:

- real space cutoff: 12 angstroms

- PME electrostatics

- constant temperature and pressure (NPT)

- time step = 1 fs

Performances:

Serial: 166 days/ns (14.26 s/step)

Serial + GPU: 26 days/ns (2.25 s/step)

24 CPUs + 4 GPUs: 3.33 days/ns (0.29 s/step)

192 CPUs + 32 GPUs: 0.58 days/ns (0.05 s/step)

Luca Ferraro Software e Sviluppi per le GPU

Porting in progress ...

 ... some GPU-ready applications are not as ready as
declared

• a lot of “experimental” work in progress

• not driven by wide experience

 many fields yet to cover

• some do not rely on community codes
efforts are “wasted” multiple times

• some might not benefit much from this revolution

9

Luca Ferraro Software e Sviluppi per le GPU

One Year of GPU Porting Activities

 SCElib (lepton-molecule scattering)
available in CUDA Zone

 BGK (Fluid Dynamics)

 Particle and polimers transport in water
(mixed MD+Boltzman)

 Pricing Derivatives with Market Model (Finance)

 Climatology (ENEA - Casaccia)

 Earth Quake modelling (INGV)

....

 and very other BIG committors (NDAs)

10

First in

Italy

Luca Ferraro Software e Sviluppi per le GPU

Looking for collaborations

research groups intereset in this new technology
are heartly invited to submit their ideas and needs

...we are paid for that!

 we are thinking also about a collaborative
acquisition of larger cluster based on GPUs

• aggregate resources

• rely on our experience in both mantaining activities
and in know-how to use them efficiently

11

Luca Ferraro Software e Sviluppi per le GPU 12

Our Experience with GPUs
... and results

Luca Ferraro Software e Sviluppi per le GPU

GPU: an awaited help

13

 GPGPU is a new promising technology to boost scientific
computing code performances:

 pros:
• High number of processor elements (up to 500)
• specialized for intense data-parallel computations

 same algorithm on many element (SPMD)

• very light thread creation/content-switch to hide latencies
 best performance when thousand of threads are cast

• impressive peak performance (> 1 TFlops)
... and often highly sustained (50-80%)

 cons:
• pre-existend code has to be modified
• still a new evolving device
• ... yet far from standardization

Luca Ferraro Software e Sviluppi per le GPU

GPU Programming Model

14

 GPU is seen as a coprocessor
• with its own memory
• able to execute and control thousands of threads

 computational-intensive data-parallel regions of an
application are delegated to the GPU device
• the same kernel is executed by all threads in parallel on

different data

 GPU threads are very different from CPU threads:
• GPU threads are extremely lightweighted

 no content-switch overload

• GPU requires thousands of threads to hide latencies and to
reach peak performance

 a multi-core CPU can handle few of threads per core

Luca Ferraro Software e Sviluppi per le GPU

Available GPU Programming Toolkit

 NVIDIA CUDA
• Proprietary
• Rapidly evolving in reaction to

user needs
• Lots of available sources and

examples

 ATI Stream
• Proprietary
• Still waiting for it…

 Microsof DirectCompute
• OS Proprietary, device

independent
• Big market force behind

 OpenCL (Khronos Group)
• open standard with the

backing of:
Apple, AMD/ATI, Intel, Nvidia

• device independent
• slow evolving standard

all present similar features

... but different programming
interfaces

Luca Ferraro Software e Sviluppi per le GPU

OpenCL or not OpenCL

 Optimizing a code with proprietary toolkit is very sensitive to the
formulation of the kernel

• high performance can be reached:

 rethinking the algorithm mapping the features exposed by the hardware

 Optimizing the same code with OpenCL for the same device is
possible

• with a hard work you get almost the same performances (10-30% less)

 Optimizing the same code for several architecture is almost
impossible

• portability is at cost of performance

• OpenCL compilers still lacks of counterpart smartness in producing a
competitive intermediate code

16

Luca Ferraro Software e Sviluppi per le GPU

Directive based approach

17

 Directive based approach are coming out for those
who really don’t want/have time to rewrite the code
(PGI Accelerator, HPMM, ...)

• “reduced” number of code modification

• incremental approach

• reducing time for code validation & verification

• there is not a standard

• performance depends on compiler

• performance “often” lower then using CUDA, OpenCL, …

Luca Ferraro Software e Sviluppi per le GPU

Looming on the Horizon

 Accelerator support in OpenMP
• AMD, Intel, NVIDIA, TI, most system vendors and many HPC

centers (including CASPUR) working on it
• A BIG customer asking for it
• Aimed at more detailed control than PGI Directives

 Heterogeneous architecture support in OpenMP
• Includes GPUs, of course
• Part of EU STREP proposal just submitted (BSC, CASPUR, EPCC,

NAG, RWTH)
• Aimed at ease of programming

 Bringing to GPUs models from different platforms
• Like those developed for IBM Cell
• Part of EU STREP proposal just submitted (BSC, CASPUR, ICHEC,

NVIDIA, PETAPATH)

Luca Ferraro Software e Sviluppi per le GPU

Underneath Whatever Model/API

19

 It all boils down to:

• taking a lot of concurrent
computations

• (typically the iteration space of a
loop)

• and spreading them among block of
threads

 With Accelerator Directives,
this is semi-automated

• The programmer annotates loops

• The compiler moves work to GPU

 With direct programming
interfaces, everything must be
done manually

Software Hardware

Thread

scalar

core

Blocco di

Thread Streaming

Multiprocessor

...

Griglia GPU

Luca Ferraro Software e Sviluppi per le GPU

Our Experience with CUDA

20

We have extensively used NVIDIA CUDA C/Fortran

• few extensions to C/Fortran language to get ready

• very easy and fast learning curve even for
computational scientists focused on research goals

• many reference sources and samples

• very easy to port to OpenCL

 just few differences

Luca Ferraro Software e Sviluppi per le GPU

Many Ready-to-use Libraries

21

 CUDA toolkit includes many mathematical libraries:
http://developer.nvidia.com/object/cuda_3_2_downloads.html

• CUBLAS: Basic Linear Algerba Subroutine
• CUFFT : Fast Fourier Transform
• CUSPARSE: sparse matrix algebra
• CURAND: pseudorandom and quasirandom number generator

 more libraries available :
• MAGMA (Matrix Algebra on GPU and Multicore Architectures)

a LAPACK port for GPU http://icl.cs.utk.edu/magma/

• CULA: Lapack port (commercial version)
http://www.culatools.com/contact/cuda-training/

• THRUST (CUDA library for parallel algorythms in C++)
http://code.google.com/p/thrust/

• CUDPP (Data Parallel Primitives): parallel prefix-sum, sort,
reduction http://code.google.com/p/cudpp/

Luca Ferraro Software e Sviluppi per le GPU

GPU vs. CPU

22

 How fast is a GPU compared to CPU?

 Which speedup should we expect?

• A factor 1?

• A factor 10?

• A factor 100?

 But let’s ask a question first:

 What are we comparing to what?

Luca Ferraro Software e Sviluppi per le GPU

Let’s Do Some Theory

23

 Intel Xeon X5650@2.67GHz esacore (Westmere)
• CPU Peak Performance

 Double precision 64 GFlops
 Single precsion 128 GFlops

 GPU NVIDIA Fermi Tesla S2050
• GPU Peak performance:

 Double precision 500 GFlops
 Single precision 1000 GFlops

 Fermi GPU & Westmere CPU are current state of the art ...

 IF the code reaches the same efficiency on both
• i.e. percentage of peak performance, let’s say 10%
• (which is quite improbable, by the way)

 THEN the GPU should be 7.8x faster than the CPU

Luca Ferraro Software e Sviluppi per le GPU

And Face Some Practice

24

 In our experience:

• using real codes (not toys)

• using CUDA or PGI Directives

• keeping a similar numerical scheme/algorithm as those in the CPU version

• honest speedups range from 2x to 12x

 And when, in the same scenario, the speedup approaches 100x:

• the CPU code was inefficiently written

• or the choice of compiler options was poor

 However:

• Some kernels are intrinsically inefficient on a conventional CPU while fly
on a GPU

• Some kernels are intrinsically inefficient on a GPU,
but the source of inefficiencies will be addressed along the roadmap

• The game on a GPU is very, very different:
a complete rethinking of the approach can sky-rocket performances

Luca Ferraro Software e Sviluppi per le GPU

Rethinking the Approach: Application Profile

 A real application is made of many
computational kernels

 E.g., for a typical “PDE on a mesh” code:

1. Source terms

2. Spatial scheme

3. Time-stepping scheme

4. Boundary conditions

 Usually, 1 and 4 will show much less concurrency

 Never expect the kernels to have the same
relative weights on the GPU as on the CPU

Luca Ferraro Software e Sviluppi per le GPU

The Bottleneck Kernel

 What to do with a kernel that brakes your GPU?

 Be objective!
• 50% of the GPU runtime vs. 4% of the CPU runtime
• But a 20x overall speedup
• Wait, maybe the ARM cores in future GPUs will fix

 Be creative!
• Find a different formulation, more GPU friendly
• Reimplement it: sometimes some dependencies are artifacts to

spare memory

 If you can’t beat them, Hide them!
• delegate it to host CPU, if data must be frequently exchanged
• It will come for free

Luca Ferraro Software e Sviluppi per le GPU

The Data Transfer Bottleneck: Single GPU

27

 Real GPU bottleneck is bandwidth for data
communication from/to GPU to/from CPU

• CPU memory bandwidth: 10-20 GB/s

• GPU memory bandwidth: peak 150 GB/s (90GB/s real)

• PCIe 16x gen2: peak 8GB/s per direction (3-6GB/s real)

RAM

FPU

GRAM

FPU

3-6 GB/s
144 GB/s20 GB/s

Luca Ferraro Software e Sviluppi per le GPU

GPU GPU

RAM

The Data Transfer Bottleneck: multi-GPUs

28

 using many GPUs:

• on the same node: might share PCIs bandwidth
 degraded performances during transfers in the same direction

• on different nodes using Infiniband QDR 4x
 bandwidth 4GB/s similar to internal bandwidth (MPI might interfere)

 transfer times is summed up:
GPU-CPU + CPU-CPU + CPU-GPU

GPU GPU

RAM
Infiniband

QDR

Luca Ferraro Software e Sviluppi per le GPU

Who’s Afraid of the Data Transfer Bottlenecks?

 Think of your host+GPU system like a cluster

• The host is already a cluster, in some respects

 And use the same approaches as in MPI

• Multiple buffering

• Overlapping communications and computations

• Hiding latency with computations

 In particular in multi-GPU, multi host applications,
it’s nothing more than having a greater latency

Luca Ferraro Software e Sviluppi per le GPU

Rethinking the Approach: Fight All Latencies

 Fundamental GPU programming principle

• Memory latency is huge (400 800 cycles), but
bandwidth is wide

• Hide memory latency behind parallelism

• Spawn a lot of threads:
if some stalls, others will work!

 Often forgotten truth

• Dependent instructions will stall

• Give enough independent instructions to your thread!

Luca Ferraro Software e Sviluppi per le GPU

TLP vs. ILP

Thread Level Parallelism

•192 threads/SM on G80
•562 threads/SM for GF100

Instruction Level Parallelism

Let the thread work on many independent
operations while reusing data as much as
possible

BEWARE: if you are short on independent data/operations

TLP and ILP strive, find your sweet-spot by experiment

Luca Ferraro Software e Sviluppi per le GPU

TLP, ILP and Resources

32

 Find your right balance
• Increasing TLP will reduce available resources per thread
• Increasing ILP may make your thread more resource hungry
• Reusing data may lessen resource usage

 Limiting the number of registers per thread at compile time
changes the generated code

• Sometimes with very pleasing results in terms of performance

high occupancy low occupancy

32768 registers
per SM

max 8 blocks per SM

Luca Ferraro Software e Sviluppi per le GPU

How to get the best from GPU

33

1. Find out if your problem is caracterized by
intense data-parallel computations

• if this is not the case, GPU might not be the solution

2. Choose the model to use:

1. directive based vs direct programming approach

3. If not using directive based approach:

1. rethink your algorithm in a GPU friendly way

2. hide latencies as much as possible

3. tune for your target HW for peak performances

4. cooperate with your CPU (eterogeneous system!)

Luca Ferraro Software e Sviluppi per le GPU

Conclusions

 GPUs do really boost intense data-parallel computations in scientific
computing codes

• at lower costs, with few efforts

 we are facing a real change

• we must surf a true eterogeneous system revolution

 too many competitive models , one to spot for the future

• portability at the cost of performances

• if you eager for performance, use your vendor’s toolkit

 what any, rethink your algorithm and recast your problem into a
GPU friendly way

 partecipate to CASPUR GPU Programming Courses
http://corsihpc.caspur.it

34

Luca Ferraro Software e Sviluppi per le GPU

References

35

 NVIDIA, NVIDIA CUDA - Programming and Best Practice Guides

 A. Munshi (Ed.) - The OpenCL Specification, Khronos OpenCL

 INTEL “Debunking the 100X GPU vs CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU”

 P. Micikevicius, “Fundamental and Analysis-Driven Optimization”,
GPU Technology Conference 2010 (GTC 2010)

 V. Volkov, “Better performance at lower occupancy”,
GPU Technology Conference 2010 (GTC 2010)

 J. Dongarra et al. “An Improved MAGMA GEMM for Fermi GPUs”

 J. Dongarra et al. “From CUDA to OpenCL: Toward a Performance-
portable Solution for Multi-platform GPU Programming”

