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What is CASPUR
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Some Partnerships
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• CNR-IPCF
• CNR-IRC
• CNR-ISAC
• CNR-ISM
• CNR-ISTM
• CNR-MDM
• ENEA
• HP
• IASMA – Fond. Mach
• IFO Regina Elena
• IIT
• INAF
• INGV
• Ist. Naz. Spallanzani

• INSEAN
• ISPRA
• ISS
• IZSLT
• Microsoft
• NuMIDIA
• NVIDIA
• Policlinico Umberto I
• SCIRE
• Sigma-Tau
• SNS di Pisa
• SISSA
• Telethon
• Ylichron

• AIA
• AlphaData
• ARPA
• CIRA
• CNMCA
• CNR-DPM
• CNR-DSV
• CNR-IAC
• CNR-ICB
• CNR-ICRM
• CNR-IMCB
• CNR-IMIP
• CNR-INFM
• CNR-INMM
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HPC: the Wrong Model

HPC Service 
Center

User2

User1
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What We Provide
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 Code optimization

 Parallelization

 Scalable algorithms

 Scalable data management

 High performance data bases

 Workflow tuning

 Highly tuned HPC codes
• SCElib (CUDA Zone!), LBM/BGK, 

CMPTool, NEMO

 Training
• Training on the job
• CASPUR’s Summer School
• 24+ intensive courses on a regular 

schedule (corsihpc.caspur.it)
• Attended by ~450 people per year

 covered disciplines:

• Applied Mathematics

• Astrophysics

• Bioinformatics

• Chemistry

• Data Analysis

• Finance

• Fluid Dynamics

• Materials Science

• Optimization Theory

• Statistics

• ... 
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CASPUR & GPUs

 Budget is drastically reduced over years

 Dominant costs of HPC:

• High-speed, low-latency interconnect

• Scalable storage and file systems

• System housing and cooling infrastructure

 Among all tested alternatives (FPGAs, exotic 
accelerators,…), GPUs:

• while being reasonably easy to program

• enabled a jump from 177 MFlops/W to 800+ MFlops/W

• and enough widespread to limit investment risks
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Jazz Fermi GPU Cluster

192 cores Intel X5650 @ 2.67 GHz

14336 cores on 32 Fermi C2050 GPUs

QDR IB Interconnect (4GB/s)

14.3 TFlops

Peak performance

Peak green performance

10.1 TFlops

Sustained Linpack

785 MFlops/W
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GPU-ready Applications

Computational Chemistry
1. NAMD

2. Amber

3. GROMACS

4. DL-POLY

5. CP2K

Fluidodynamics
1. OpenFOAM

2. ACUSIM

Numerical Analysis
1. Matlab+GPU

Bioinformatics
1. CUDA-BLASTP

2. GPU-HMMER

3. CUDASW++

Many CUDA-enabled applications are installed and ready to use on the cluster:

Finance
1. QuantLib
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NAMD Performance on CPUs/GPU

Satellite Tobacco Mosaic Virus (STMV)  with  NAMD

This benchmark consists of 1,066,628 atoms

Parameters affecting performances:

- real space cutoff: 12 angstroms

- PME electrostatics

- constant temperature and pressure (NPT)

- time step = 1 fs

Performances:

Serial: 166 days/ns (14.26 s/step) 

Serial + GPU:   26 days/ns (2.25 s/step) 

24 CPUs + 4 GPUs: 3.33 days/ns (0.29 s/step) 

192 CPUs + 32 GPUs: 0.58 days/ns (0.05 s/step) 
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Porting in progress ...

 ... some GPU-ready applications are not as ready as 
declared

• a lot of “experimental” work in progress

• not driven by wide experience

 many fields yet to cover

• some do not rely on community codes
efforts are “wasted” multiple times

• some might not benefit much from this revolution

9
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One Year of GPU Porting Activities

 SCElib (lepton-molecule scattering) 
available in CUDA Zone

 BGK (Fluid Dynamics) 

 Particle and polimers transport in water 
(mixed MD+Boltzman)

 Pricing Derivatives with Market Model (Finance)

 Climatology (ENEA - Casaccia)

 Earth Quake modelling (INGV)

....

 and very other BIG committors (NDAs)

10

First in 

Italy
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Looking for collaborations

research groups intereset in this new technology
are heartly invited to submit their ideas and needs

...we are paid for that!

 we are thinking also about  a  collaborative  
acquisition  of  larger  cluster  based on  GPUs

• aggregate resources

• rely  on  our experience in  both  mantaining  activities 
and  in  know-how  to  use  them efficiently

11
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Our Experience with GPUs
... and results
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GPU: an awaited help
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 GPGPU is a new promising technology to boost scientific 
computing code performances:

  pros:
• High number of processor elements (up to 500) 
• specialized for intense data-parallel computations

 same algorithm on many element (SPMD)

• very light thread creation/content-switch to hide latencies
 best performance when thousand of threads are cast

• impressive peak performance ( > 1 TFlops)
... and often highly sustained (50-80%)

  cons:
• pre-existend code has to be modified
• still a new evolving device
• ... yet far from standardization
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GPU Programming Model
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 GPU is seen as a coprocessor 
• with its own memory
• able to execute and control thousands of threads

 computational-intensive data-parallel regions of an 
application are delegated to the GPU device
• the same kernel is executed by all threads in parallel on 

different data

 GPU threads are very different from CPU threads:
• GPU  threads are extremely lightweighted

 no  content-switch overload

• GPU requires thousands of threads to hide latencies and to 
reach peak performance

 a multi-core CPU can handle few of threads per core
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Available GPU Programming Toolkit

 NVIDIA CUDA
• Proprietary
• Rapidly evolving in reaction to 

user needs
• Lots of available sources and 

examples

 ATI Stream
• Proprietary
• Still waiting for it…

 Microsof DirectCompute
• OS Proprietary, device 

independent
• Big market force behind

 OpenCL (Khronos Group)
• open standard with the 

backing of: 
Apple, AMD/ATI, Intel, Nvidia

• device independent
• slow evolving standard

all present similar features

... but different programming 
interfaces
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OpenCL or not OpenCL

 Optimizing a code with proprietary toolkit is very sensitive to the 
formulation of the kernel

• high performance can be reached:

 rethinking the algorithm mapping the features exposed by the hardware

 Optimizing the same code with OpenCL for the same device is 
possible

• with a hard work you get almost the same performances (10-30% less)

 Optimizing the same code for several architecture is almost 
impossible

• portability is at cost of performance 

• OpenCL compilers still lacks of counterpart smartness in producing a 
competitive intermediate code

16
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Directive based approach
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 Directive based approach are coming out for those 
who really don’t want/have time to rewrite the code
(PGI Accelerator, HPMM, ...)

 

• “reduced” number of code modification

• incremental approach

• reducing time for code validation & verification

 

• there is not a standard

• performance depends on compiler

• performance “often” lower then using CUDA, OpenCL, …
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Looming on the Horizon

 Accelerator support in OpenMP
• AMD, Intel, NVIDIA, TI, most system vendors and many HPC 

centers (including CASPUR) working on it
• A BIG customer asking for it
• Aimed at more detailed control than PGI Directives

 Heterogeneous architecture support in OpenMP
• Includes GPUs, of course
• Part of EU STREP proposal just submitted (BSC, CASPUR, EPCC, 

NAG, RWTH)
• Aimed at ease of programming

 Bringing to GPUs models from different platforms
• Like those developed for IBM Cell
• Part of EU STREP proposal just submitted (BSC, CASPUR, ICHEC, 

NVIDIA, PETAPATH)
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Underneath Whatever Model/API
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 It all boils down to:

• taking a lot of concurrent 
computations

• (typically the iteration space of a 
loop)

• and spreading them among block of 
threads

 With Accelerator Directives, 
this is semi-automated

• The programmer annotates loops

• The compiler moves work to GPU

 With direct programming 
interfaces, everything must be 
done manually

Software Hardware

Thread

scalar

core

Blocco di 

Thread Streaming

Multiprocessor

...

Griglia GPU
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Our Experience with CUDA
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We have extensively used NVIDIA CUDA C/Fortran

• few extensions to C/Fortran language to get ready

• very easy and fast learning curve even for 
computational scientists  focused on research goals

• many reference sources and samples

• very easy to port to OpenCL

 just  few differences 
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Many  Ready-to-use Libraries
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 CUDA toolkit includes many mathematical libraries:
http://developer.nvidia.com/object/cuda_3_2_downloads.html

• CUBLAS: Basic Linear Algerba Subroutine 
• CUFFT : Fast Fourier Transform 
• CUSPARSE: sparse matrix algebra
• CURAND: pseudorandom and quasirandom number generator

 more libraries available :
• MAGMA (Matrix Algebra on GPU and Multicore Architectures) 

a LAPACK port for GPU http://icl.cs.utk.edu/magma/

• CULA: Lapack port (commercial version)
http://www.culatools.com/contact/cuda-training/

• THRUST (CUDA library for parallel algorythms in C++)
http://code.google.com/p/thrust/

• CUDPP (Data Parallel Primitives): parallel prefix-sum, sort, 
reduction http://code.google.com/p/cudpp/
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GPU vs. CPU
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 How fast is a GPU compared to CPU?

 Which speedup should we expect?

• A factor 1?

• A factor 10?

• A factor 100?

 But let’s ask a question first:

 What are we comparing to what?
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Let’s Do Some Theory
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 Intel Xeon X5650@2.67GHz esacore (Westmere)
• CPU Peak Performance

 Double precision 64 GFlops
 Single precsion 128 GFlops

 GPU NVIDIA Fermi Tesla S2050
• GPU Peak performance:

 Double precision 500 GFlops 
 Single precision 1000 GFlops 

 Fermi GPU & Westmere CPU are current state of the art ...

 IF the code reaches the same efficiency on both
• i.e. percentage of peak performance, let’s say 10%
• (which is quite improbable, by the way)

 THEN the GPU should be 7.8x faster than the CPU
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And Face Some Practice
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 In our experience:

• using real codes (not toys)

• using CUDA or PGI Directives

• keeping a similar numerical scheme/algorithm as those in the CPU version

• honest speedups range from 2x to 12x

 And when, in the same scenario, the speedup approaches 100x:

• the CPU code was inefficiently written

• or the choice of compiler options was poor

 However:

• Some kernels are intrinsically inefficient on a conventional CPU while fly 
on a GPU

• Some kernels are intrinsically inefficient on a GPU, 
but the source of inefficiencies will be addressed along the roadmap

• The game on a GPU is very, very different:
a complete rethinking of the approach can sky-rocket performances
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Rethinking the Approach: Application Profile

 A real application is made of many 
computational kernels

 E.g., for a typical “PDE on a mesh” code:

1. Source terms

2. Spatial scheme

3. Time-stepping scheme

4. Boundary conditions

 Usually, 1 and 4 will show much less concurrency

 Never expect the kernels to have the same 
relative weights on the GPU as on the CPU
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The Bottleneck Kernel

 What to do with a kernel that brakes your GPU?

 Be objective!
• 50% of the GPU runtime vs. 4% of the CPU runtime
• But a 20x overall speedup
• Wait, maybe the ARM cores in future GPUs will fix 

 Be creative!
• Find a different formulation, more GPU friendly
• Reimplement it: sometimes some dependencies are artifacts to 

spare memory

 If you can’t beat them, Hide them!
• delegate it to host CPU, if data must be frequently exchanged 
• It will come for free



Luca Ferraro Software e Sviluppi per le GPU

The Data Transfer Bottleneck: Single GPU
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 Real GPU bottleneck is bandwidth for data 
communication from/to GPU to/from CPU 

• CPU memory bandwidth: 10-20 GB/s

• GPU memory bandwidth:  peak  150 GB/s  (90GB/s real)

• PCIe 16x gen2: peak 8GB/s per direction (3-6GB/s real)

RAM

FPU

GRAM

FPU

3-6 GB/s
144 GB/s20 GB/s
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GPU GPU

RAM

The Data Transfer Bottleneck: multi-GPUs

28

 using many GPUs:

• on the same node: might share PCIs bandwidth
 degraded performances during transfers in the same direction

• on different nodes using Infiniband QDR 4x 
 bandwidth 4GB/s similar to internal bandwidth (MPI might interfere)

 transfer times is summed up: 
GPU-CPU + CPU-CPU + CPU-GPU

GPU GPU

RAM
Infiniband

QDR
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Who’s Afraid of the Data Transfer Bottlenecks?

 Think of your host+GPU system like a cluster

• The host is already a cluster, in some respects

 And use the same approaches as in MPI

• Multiple buffering

• Overlapping communications and computations

• Hiding latency with computations

 In particular in multi-GPU, multi host applications, 
it’s nothing more than having a greater latency
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Rethinking the Approach: Fight All Latencies

 Fundamental GPU programming  principle

• Memory latency is huge (400 800 cycles), but 
bandwidth is wide

• Hide memory latency behind parallelism

• Spawn a lot of threads: 
if some stalls, others will work!

 Often forgotten truth

• Dependent instructions will stall

• Give enough independent instructions to your thread!
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TLP vs. ILP

Thread Level Parallelism

•192 threads/SM on G80
•562 threads/SM for GF100

Instruction Level Parallelism

Let the thread work on many independent 
operations while reusing data as much as 
possible 

BEWARE: if you are short on independent data/operations 

TLP and ILP strive, find your sweet-spot by experiment
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TLP, ILP and Resources
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 Find your right balance
• Increasing TLP will reduce available resources per thread
• Increasing ILP may make your thread more resource hungry
• Reusing data may lessen resource usage

 Limiting the number of registers per thread at compile time 
changes the generated code

• Sometimes with very pleasing results in terms of performance

high occupancy low occupancy

32768 registers 
per SM

max 8 blocks per SM



Luca Ferraro Software e Sviluppi per le GPU

How to get the best from GPU
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1. Find out if your problem is caracterized by
intense data-parallel computations

• if this is not the case, GPU might not be the solution

2. Choose the model to use:

1. directive based  vs  direct programming approach

3. If not using directive based approach:

1. rethink your algorithm in a GPU friendly way

2. hide latencies as much as possible

3. tune for your target HW for peak performances

4. cooperate with your CPU (eterogeneous system!)
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Conclusions

 GPUs do really boost intense data-parallel computations in scientific 
computing codes 

• at lower costs, with few efforts

 we are facing a real change

• we must surf a true eterogeneous system revolution

 too many competitive models ,  one to spot for the future

• portability at the cost of performances

• if you eager for performance, use your vendor’s toolkit

 what any, rethink your algorithm and recast your problem into a 
GPU friendly way

 partecipate to CASPUR  GPU Programming Courses
http://corsihpc.caspur.it

34
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