
Luca Ferraro Software e Sviluppi per le GPU

Software e Sviluppi per le GPU

Luca Ferraro

(l.ferraro@caspur.it)

Stato e Prospettive del Calcolo Scientifico

16-18 Febbraio 2011

Laboratori Nazionali di Legnaro (INFN)

Luca Ferraro Software e Sviluppi per le GPU

What is CASPUR

1

Luca Ferraro Software e Sviluppi per le GPU

Some Partnerships

2

• CNR-IPCF
• CNR-IRC
• CNR-ISAC
• CNR-ISM
• CNR-ISTM
• CNR-MDM
• ENEA
• HP
• IASMA – Fond. Mach
• IFO Regina Elena
• IIT
• INAF
• INGV
• Ist. Naz. Spallanzani

• INSEAN
• ISPRA
• ISS
• IZSLT
• Microsoft
• NuMIDIA
• NVIDIA
• Policlinico Umberto I
• SCIRE
• Sigma-Tau
• SNS di Pisa
• SISSA
• Telethon
• Ylichron

• AIA
• AlphaData
• ARPA
• CIRA
• CNMCA
• CNR-DPM
• CNR-DSV
• CNR-IAC
• CNR-ICB
• CNR-ICRM
• CNR-IMCB
• CNR-IMIP
• CNR-INFM
• CNR-INMM

Luca Ferraro Software e Sviluppi per le GPUFebrary 10, 2011 3

HPC: the Wrong Model

HPC Service
Center

User2

User1

User3
User4

User5

Luca Ferraro Software e Sviluppi per le GPU

What We Provide

4

 Code optimization

 Parallelization

 Scalable algorithms

 Scalable data management

 High performance data bases

 Workflow tuning

 Highly tuned HPC codes
• SCElib (CUDA Zone!), LBM/BGK,

CMPTool, NEMO

 Training
• Training on the job
• CASPUR’s Summer School
• 24+ intensive courses on a regular

schedule (corsihpc.caspur.it)
• Attended by ~450 people per year

 covered disciplines:

• Applied Mathematics

• Astrophysics

• Bioinformatics

• Chemistry

• Data Analysis

• Finance

• Fluid Dynamics

• Materials Science

• Optimization Theory

• Statistics

• ...

Luca Ferraro Software e Sviluppi per le GPU

CASPUR & GPUs

 Budget is drastically reduced over years

 Dominant costs of HPC:

• High-speed, low-latency interconnect

• Scalable storage and file systems

• System housing and cooling infrastructure

 Among all tested alternatives (FPGAs, exotic
accelerators,…), GPUs:

• while being reasonably easy to program

• enabled a jump from 177 MFlops/W to 800+ MFlops/W

• and enough widespread to limit investment risks

Luca Ferraro Software e Sviluppi per le GPUFebrary 10, 2011 6

Jazz Fermi GPU Cluster

192 cores Intel X5650 @ 2.67 GHz

14336 cores on 32 Fermi C2050 GPUs

QDR IB Interconnect (4GB/s)

14.3 TFlops

Peak performance

Peak green performance

10.1 TFlops

Sustained Linpack

785 MFlops/W

Luca Ferraro Software e Sviluppi per le GPU

GPU-ready Applications

Computational Chemistry
1. NAMD

2. Amber

3. GROMACS

4. DL-POLY

5. CP2K

Fluidodynamics
1. OpenFOAM

2. ACUSIM

Numerical Analysis
1. Matlab+GPU

Bioinformatics
1. CUDA-BLASTP

2. GPU-HMMER

3. CUDASW++

Many CUDA-enabled applications are installed and ready to use on the cluster:

Finance
1. QuantLib

Luca Ferraro Software e Sviluppi per le GPU 8

NAMD Performance on CPUs/GPU

Satellite Tobacco Mosaic Virus (STMV) with NAMD

This benchmark consists of 1,066,628 atoms

Parameters affecting performances:

- real space cutoff: 12 angstroms

- PME electrostatics

- constant temperature and pressure (NPT)

- time step = 1 fs

Performances:

Serial: 166 days/ns (14.26 s/step)

Serial + GPU: 26 days/ns (2.25 s/step)

24 CPUs + 4 GPUs: 3.33 days/ns (0.29 s/step)

192 CPUs + 32 GPUs: 0.58 days/ns (0.05 s/step)

Luca Ferraro Software e Sviluppi per le GPU

Porting in progress ...

 ... some GPU-ready applications are not as ready as
declared

• a lot of “experimental” work in progress

• not driven by wide experience

 many fields yet to cover

• some do not rely on community codes
efforts are “wasted” multiple times

• some might not benefit much from this revolution

9

Luca Ferraro Software e Sviluppi per le GPU

One Year of GPU Porting Activities

 SCElib (lepton-molecule scattering)
available in CUDA Zone

 BGK (Fluid Dynamics)

 Particle and polimers transport in water
(mixed MD+Boltzman)

 Pricing Derivatives with Market Model (Finance)

 Climatology (ENEA - Casaccia)

 Earth Quake modelling (INGV)

....

 and very other BIG committors (NDAs)

10

First in

Italy

Luca Ferraro Software e Sviluppi per le GPU

Looking for collaborations

research groups intereset in this new technology
are heartly invited to submit their ideas and needs

...we are paid for that!

 we are thinking also about a collaborative
acquisition of larger cluster based on GPUs

• aggregate resources

• rely on our experience in both mantaining activities
and in know-how to use them efficiently

11

Luca Ferraro Software e Sviluppi per le GPU 12

Our Experience with GPUs
... and results

Luca Ferraro Software e Sviluppi per le GPU

GPU: an awaited help

13

 GPGPU is a new promising technology to boost scientific
computing code performances:

  pros:
• High number of processor elements (up to 500)
• specialized for intense data-parallel computations

 same algorithm on many element (SPMD)

• very light thread creation/content-switch to hide latencies
 best performance when thousand of threads are cast

• impressive peak performance (> 1 TFlops)
... and often highly sustained (50-80%)

  cons:
• pre-existend code has to be modified
• still a new evolving device
• ... yet far from standardization

Luca Ferraro Software e Sviluppi per le GPU

GPU Programming Model

14

 GPU is seen as a coprocessor
• with its own memory
• able to execute and control thousands of threads

 computational-intensive data-parallel regions of an
application are delegated to the GPU device
• the same kernel is executed by all threads in parallel on

different data

 GPU threads are very different from CPU threads:
• GPU threads are extremely lightweighted

 no content-switch overload

• GPU requires thousands of threads to hide latencies and to
reach peak performance

 a multi-core CPU can handle few of threads per core

Luca Ferraro Software e Sviluppi per le GPU

Available GPU Programming Toolkit

 NVIDIA CUDA
• Proprietary
• Rapidly evolving in reaction to

user needs
• Lots of available sources and

examples

 ATI Stream
• Proprietary
• Still waiting for it…

 Microsof DirectCompute
• OS Proprietary, device

independent
• Big market force behind

 OpenCL (Khronos Group)
• open standard with the

backing of:
Apple, AMD/ATI, Intel, Nvidia

• device independent
• slow evolving standard

all present similar features

... but different programming
interfaces

Luca Ferraro Software e Sviluppi per le GPU

OpenCL or not OpenCL

 Optimizing a code with proprietary toolkit is very sensitive to the
formulation of the kernel

• high performance can be reached:

 rethinking the algorithm mapping the features exposed by the hardware

 Optimizing the same code with OpenCL for the same device is
possible

• with a hard work you get almost the same performances (10-30% less)

 Optimizing the same code for several architecture is almost
impossible

• portability is at cost of performance

• OpenCL compilers still lacks of counterpart smartness in producing a
competitive intermediate code

16

Luca Ferraro Software e Sviluppi per le GPU

Directive based approach

17

 Directive based approach are coming out for those
who really don’t want/have time to rewrite the code
(PGI Accelerator, HPMM, ...)

 

• “reduced” number of code modification

• incremental approach

• reducing time for code validation & verification

 

• there is not a standard

• performance depends on compiler

• performance “often” lower then using CUDA, OpenCL, …

Luca Ferraro Software e Sviluppi per le GPU

Looming on the Horizon

 Accelerator support in OpenMP
• AMD, Intel, NVIDIA, TI, most system vendors and many HPC

centers (including CASPUR) working on it
• A BIG customer asking for it
• Aimed at more detailed control than PGI Directives

 Heterogeneous architecture support in OpenMP
• Includes GPUs, of course
• Part of EU STREP proposal just submitted (BSC, CASPUR, EPCC,

NAG, RWTH)
• Aimed at ease of programming

 Bringing to GPUs models from different platforms
• Like those developed for IBM Cell
• Part of EU STREP proposal just submitted (BSC, CASPUR, ICHEC,

NVIDIA, PETAPATH)

Luca Ferraro Software e Sviluppi per le GPU

Underneath Whatever Model/API

19

 It all boils down to:

• taking a lot of concurrent
computations

• (typically the iteration space of a
loop)

• and spreading them among block of
threads

 With Accelerator Directives,
this is semi-automated

• The programmer annotates loops

• The compiler moves work to GPU

 With direct programming
interfaces, everything must be
done manually

Software Hardware

Thread

scalar

core

Blocco di

Thread Streaming

Multiprocessor

...

Griglia GPU

Luca Ferraro Software e Sviluppi per le GPU

Our Experience with CUDA

20

We have extensively used NVIDIA CUDA C/Fortran

• few extensions to C/Fortran language to get ready

• very easy and fast learning curve even for
computational scientists focused on research goals

• many reference sources and samples

• very easy to port to OpenCL

 just few differences

Luca Ferraro Software e Sviluppi per le GPU

Many Ready-to-use Libraries

21

 CUDA toolkit includes many mathematical libraries:
http://developer.nvidia.com/object/cuda_3_2_downloads.html

• CUBLAS: Basic Linear Algerba Subroutine
• CUFFT : Fast Fourier Transform
• CUSPARSE: sparse matrix algebra
• CURAND: pseudorandom and quasirandom number generator

 more libraries available :
• MAGMA (Matrix Algebra on GPU and Multicore Architectures)

a LAPACK port for GPU http://icl.cs.utk.edu/magma/

• CULA: Lapack port (commercial version)
http://www.culatools.com/contact/cuda-training/

• THRUST (CUDA library for parallel algorythms in C++)
http://code.google.com/p/thrust/

• CUDPP (Data Parallel Primitives): parallel prefix-sum, sort,
reduction http://code.google.com/p/cudpp/

Luca Ferraro Software e Sviluppi per le GPU

GPU vs. CPU

22

 How fast is a GPU compared to CPU?

 Which speedup should we expect?

• A factor 1?

• A factor 10?

• A factor 100?

 But let’s ask a question first:

 What are we comparing to what?

Luca Ferraro Software e Sviluppi per le GPU

Let’s Do Some Theory

23

 Intel Xeon X5650@2.67GHz esacore (Westmere)
• CPU Peak Performance

 Double precision 64 GFlops
 Single precsion 128 GFlops

 GPU NVIDIA Fermi Tesla S2050
• GPU Peak performance:

 Double precision 500 GFlops
 Single precision 1000 GFlops

 Fermi GPU & Westmere CPU are current state of the art ...

 IF the code reaches the same efficiency on both
• i.e. percentage of peak performance, let’s say 10%
• (which is quite improbable, by the way)

 THEN the GPU should be 7.8x faster than the CPU

Luca Ferraro Software e Sviluppi per le GPU

And Face Some Practice

24

 In our experience:

• using real codes (not toys)

• using CUDA or PGI Directives

• keeping a similar numerical scheme/algorithm as those in the CPU version

• honest speedups range from 2x to 12x

 And when, in the same scenario, the speedup approaches 100x:

• the CPU code was inefficiently written

• or the choice of compiler options was poor

 However:

• Some kernels are intrinsically inefficient on a conventional CPU while fly
on a GPU

• Some kernels are intrinsically inefficient on a GPU,
but the source of inefficiencies will be addressed along the roadmap

• The game on a GPU is very, very different:
a complete rethinking of the approach can sky-rocket performances

Luca Ferraro Software e Sviluppi per le GPU

Rethinking the Approach: Application Profile

 A real application is made of many
computational kernels

 E.g., for a typical “PDE on a mesh” code:

1. Source terms

2. Spatial scheme

3. Time-stepping scheme

4. Boundary conditions

 Usually, 1 and 4 will show much less concurrency

 Never expect the kernels to have the same
relative weights on the GPU as on the CPU

Luca Ferraro Software e Sviluppi per le GPU

The Bottleneck Kernel

 What to do with a kernel that brakes your GPU?

 Be objective!
• 50% of the GPU runtime vs. 4% of the CPU runtime
• But a 20x overall speedup
• Wait, maybe the ARM cores in future GPUs will fix

 Be creative!
• Find a different formulation, more GPU friendly
• Reimplement it: sometimes some dependencies are artifacts to

spare memory

 If you can’t beat them, Hide them!
• delegate it to host CPU, if data must be frequently exchanged
• It will come for free

Luca Ferraro Software e Sviluppi per le GPU

The Data Transfer Bottleneck: Single GPU

27

 Real GPU bottleneck is bandwidth for data
communication from/to GPU to/from CPU

• CPU memory bandwidth: 10-20 GB/s

• GPU memory bandwidth: peak 150 GB/s (90GB/s real)

• PCIe 16x gen2: peak 8GB/s per direction (3-6GB/s real)

RAM

FPU

GRAM

FPU

3-6 GB/s
144 GB/s20 GB/s

Luca Ferraro Software e Sviluppi per le GPU

GPU GPU

RAM

The Data Transfer Bottleneck: multi-GPUs

28

 using many GPUs:

• on the same node: might share PCIs bandwidth
 degraded performances during transfers in the same direction

• on different nodes using Infiniband QDR 4x
 bandwidth 4GB/s similar to internal bandwidth (MPI might interfere)

 transfer times is summed up:
GPU-CPU + CPU-CPU + CPU-GPU

GPU GPU

RAM
Infiniband

QDR

Luca Ferraro Software e Sviluppi per le GPU

Who’s Afraid of the Data Transfer Bottlenecks?

 Think of your host+GPU system like a cluster

• The host is already a cluster, in some respects

 And use the same approaches as in MPI

• Multiple buffering

• Overlapping communications and computations

• Hiding latency with computations

 In particular in multi-GPU, multi host applications,
it’s nothing more than having a greater latency

Luca Ferraro Software e Sviluppi per le GPU

Rethinking the Approach: Fight All Latencies

 Fundamental GPU programming principle

• Memory latency is huge (400 800 cycles), but
bandwidth is wide

• Hide memory latency behind parallelism

• Spawn a lot of threads:
if some stalls, others will work!

 Often forgotten truth

• Dependent instructions will stall

• Give enough independent instructions to your thread!

Luca Ferraro Software e Sviluppi per le GPU

TLP vs. ILP

Thread Level Parallelism

•192 threads/SM on G80
•562 threads/SM for GF100

Instruction Level Parallelism

Let the thread work on many independent
operations while reusing data as much as
possible

BEWARE: if you are short on independent data/operations

TLP and ILP strive, find your sweet-spot by experiment

Luca Ferraro Software e Sviluppi per le GPU

TLP, ILP and Resources

32

 Find your right balance
• Increasing TLP will reduce available resources per thread
• Increasing ILP may make your thread more resource hungry
• Reusing data may lessen resource usage

 Limiting the number of registers per thread at compile time
changes the generated code

• Sometimes with very pleasing results in terms of performance

high occupancy low occupancy

32768 registers
per SM

max 8 blocks per SM

Luca Ferraro Software e Sviluppi per le GPU

How to get the best from GPU

33

1. Find out if your problem is caracterized by
intense data-parallel computations

• if this is not the case, GPU might not be the solution

2. Choose the model to use:

1. directive based vs direct programming approach

3. If not using directive based approach:

1. rethink your algorithm in a GPU friendly way

2. hide latencies as much as possible

3. tune for your target HW for peak performances

4. cooperate with your CPU (eterogeneous system!)

Luca Ferraro Software e Sviluppi per le GPU

Conclusions

 GPUs do really boost intense data-parallel computations in scientific
computing codes

• at lower costs, with few efforts

 we are facing a real change

• we must surf a true eterogeneous system revolution

 too many competitive models , one to spot for the future

• portability at the cost of performances

• if you eager for performance, use your vendor’s toolkit

 what any, rethink your algorithm and recast your problem into a
GPU friendly way

 partecipate to CASPUR GPU Programming Courses
http://corsihpc.caspur.it

34

Luca Ferraro Software e Sviluppi per le GPU

References

35

 NVIDIA, NVIDIA CUDA - Programming and Best Practice Guides

 A. Munshi (Ed.) - The OpenCL Specification, Khronos OpenCL

 INTEL “Debunking the 100X GPU vs CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU”

 P. Micikevicius, “Fundamental and Analysis-Driven Optimization”,
GPU Technology Conference 2010 (GTC 2010)

 V. Volkov, “Better performance at lower occupancy”,
GPU Technology Conference 2010 (GTC 2010)

 J. Dongarra et al. “An Improved MAGMA GEMM for Fermi GPUs”

 J. Dongarra et al. “From CUDA to OpenCL: Toward a Performance-
portable Solution for Multi-platform GPU Programming”

