# Evoluzione dell'accesso allo storage e della gestione dati

### Giacinto DONVITO INFN-Bari

Slides: Vincenzo Vagnoni, Stefano Bagnasco, Daniele Bonacorsi, Alessandro De Girolamo, e altri

# Outlook

Data Management activity report from experiments
Experiments global activities

- INFN related contribution
- CNAF experience with data management in last year of data taking

# Overall status of experiment's data management

• Generally speaking data management/access is able to cope with the amount of data available at the moment

• Still few open issues:

- Tape
- Disk usage
- number of accesses per dataset
  - Job queue time, site load, etc
- human effort
  - Tier3, Tier2 deletion requests

## ALICE SE USAGE



Bari::SE 
 Bologna::SE 
 Bratislava::SE 
 CAF::SE 
 Catania::SE 
 CCIN2P3::SE 
 CERN::SE 
 Clermont::SE 
 CNAF::SE 
 CNAF::S

# CMS WAN Transfers rate



Maximum: 1,865 MB/s, Minimum: 142.99 MB/s, Average: 925.68 MB/s, Current: 299.67 MB/s

#### **Destination Sites**





# ATLAS



# **Model Transition**



# **EOS Architecture**

### Management Server

Pluggable Namespace, Quota Strong Authentication Capability Engine File Placement File Location

### Message Queue

Service State Messages File Transaction Reports

### File Storage

File & File Meta Data Store Capability Authorization Checksumming & Verification (adler,crc32,md5,sha1) Disk Error Detection (Scrubbing)

### EOS NS Scalability

| Namespace                                          | VI                                                       | V2*                                  |
|----------------------------------------------------|----------------------------------------------------------|--------------------------------------|
| Inode<br>Scale                                     | 100 Mio. Inodes                                          | 1000 Mio inodes                      |
| In-Memory Size                                     | 80-100 GB<br>(replicas have minor<br>space contribution) | 20 GB<br>x n(replica)                |
| Boot Time                                          | ~520 s **                                                | I5-30 min **<br>(difficult to guess) |
| Pool size assuming<br>avg. 10 Mb/file + 2 replicas | 2 PB                                                     | 20 PB                                |
| Pool Nodes assuming<br>40 TB/node                  | 50                                                       | 500                                  |
| File Systems assuming<br>20 / node                 | 1.000                                                    | 10.000                               |



#### Implemented as plugins in **xrootd**



## **EOS Philosophy**

- Storage with single disks (JBODs-no RAID arrays) cheap & unreliable
- Network RAID within node groups (scheduling groups & round-robin rings)
- Self-healing from a clients point of view all files are always readable & writable
- Online filesystem migration
- Tunable quality of service via redundancy parameters
- Tradeoff in Scalability vs Latency (pluggable hierarchical namespace - scale out for read - scale out for write only by namespace split)





# ATLAS

### **Replica placement**



In order to minimize the risk of data loss we couple disks into scheduling groups (current default is 8 disks per group)

- The system selects a scheduling group to store a file in in a round-robin
- All the other replicas of this file are stored within the same group
  - Data placement optimised vs hardware layout (PC boxes, network infrastructure, etc...)



### Read test

NS Size: 10 Mio Files \* 100 Million read open \* 350 ROOT clients 7 kHz \* CPU usage 20%

Write test NS Size: 10 Mio Files – \* 22 ROOT clients 1 kH: \* 1 ROOT client 220 Hz



### EOSATLAS Usage



|          | Scale Comparison |       |       |  |  |  |
|----------|------------------|-------|-------|--|--|--|
| EOS      | C2ATLAS          | C2CMS | C2ALL |  |  |  |
| Nodes    | 8%               | 7%    | 2%    |  |  |  |
| IO Read  | 30%              | 42%   | 11%   |  |  |  |
| IO Write | 110%             | 56%   | 28%   |  |  |  |





EOS Server well tested: avg. running at 25% of available IO bandwidth



www.cern.ch/it

– .... EOS ....



# Dynamic Data Placement

#### **Problems with pre-placement strategy of early LHC data:**

- Big fraction of data is not used
- Suboptimal usage of network and storage resources: Uninteresting data is preplaced equally to the interesting data

#### Evolution: PanDA Dynamic Data Placement PD2P

- Data is only preplaced at T1s
- Trigger secondary replication to T2s for used data
- Replication is based on decisions taken by the workload management system. It is **not** based on DDM Popularity
  - 1. Data is preplaced at T1s only
  - 2. User submits analysis jobs on a particular dataset
  - 3. PanDA runs analysis jobs in the T1 initially and simultaneously triggers additional replication requests to a T2
  - Consideration: PanDA server is centralized
  - T2 selection is based on free space, queue depth, past performance...
  - 4. Once the dataset has been replicated to the T2, pending jobs at the T1 can be rebrokered
  - 5. If the dataset is considered very hot the dataset can be replicated further
  - based on the backlog of jobs
  - 6. Cleanup of unused datasets done by Victor (see following slides)







 PD2P now responsible for significant data movement on the grid





# Automatic site cleaning: Victor

- Fully automated system for cleaning that replaces laborious (occasionally error prone) manual work
- Reduction of secondary replicas only
  - Downgrading primary to secondary is a decision done by the physics coordination
  - In case of disaster data can be re-replicated again (but no disasters have happened so far!!!)
- Running on centrally managed spacetokens
- Allows ATLAS to fully use the deployed storage space
- Built on top of existing DDM components: DDM Storage Accounting, DDM Popularity and Centralized Deletion Service



# Atlas Data evolution

ATLAS

Direct I/O from the storage
Remote (WAN) reading (see CMS xrootd activity)
Broke cloud boundaries => "big tier2" (in italy: napoli e roma)



Custodial => Tape
Primary => "Master" copy on disk (not to be deleted)
Secondary => "Cache" copy on disk (could be deleted)

# CMS



### **Groups Short Term**

### WAN Data Access

- Roll-out of xrootd redirector
- Operational Issues
- Timescale, how to measure success
- Benefits of caching at Tier-3s, test plans
- Data Popularity
- Development Needed
- Schedule for potential functionality
- CERN Analysis Disk
- Testing needed
- Proposed new architecture for Default pool
- Schedule for roll-out
- Impact on workflows

Longer term activities

### Short term activities

- A number of forward looking items were addressed
- More automated dynamic data placement.
- Broader use of of the wide area access to data
- Dynamic use of local storage
  - Improving IO by orders of magnitude
  - Plans for data archives
- Report from the HEPIX Storage Working Group



### Targets

- The target users of this project:
  - End-users: event viewers, running on a few CMS files, sharing files with a group.
  - T3s: Running medium-scale ntuple analysis
- None of these users are well-represented by CMS tools right now.
  - So, a prototype is better than nothing...

# Global Xrootd

# **Xrootd Prototype**

- Have a global redirector users can contact for all files.
  - Can use any ROOT-based app to access the prototype infrastructure! Each file only has one possible URL
- Each participating site deploys at least I xrootd server that acts like a proxy/door to the external world.



## **CMSSW** Improvements

- In order to improve WAN streaming performance, we worked hard with the CMSSW team to optimize the I/O code.
- A sample, I/O-intensive analysis of 60k evts reading data from FNAL dCache/Xrootd:

| Site     | Ping time | Wall time   |
|----------|-----------|-------------|
| FNAL     | .1ms      | <b>80</b> s |
| Nebraska | 17ms      | <b>80</b> s |
| CERN     | 128ms     | l6ls        |



# T3 Benefits

- A T3 no longer needs to learn CMS data movement tools to access data.
- If the T3 is xrootd-based, we can use caches to improve data locality.
- If the T3 is not xrootd-based, they can just "fall back" to the global T3 cluster if the file is not local.



### Example:T3 at Omaha

- We don't have the effort to efficiently maintain CMS PhEDEx at Omaha.
- This T3 only reads from the global xrootd system. Good continuous test.
- 6,000 wall hours in the last day.



Notice xrootd can download from multiple sites at once! This helps one avoid overloaded sites; bittorrent-like.

Case

Fallback

 CMSSW\_3\_9\_x includes ability to open a file remotely if the local file is missing.







- The capabilities of a geographically partitioned wide area access system are attractive
- Start with Tier-3s and interactive use plus the fall back channel
- Maybe add access to CAF systems through an EOS pool as available
- Gain some experiment
- Use the popularity service to better predict what datasets will only be used once.



Cost

#### Global xrootd federation

- Thoughts on a dynamic test infrastructure
  - More redirectors, >= 6 sites, thresholds to join
  - Different xrootd implementations, and storage solutions
  - Subset of resources could work on different test scopes



#### Milestones



#### Early March

- Minor code updates by xrootd team
- Central services available for interested parties to join
- Base-level monitoring available
- <u>Deliverable</u>: a plan for YOU to join (thresholds, actions needed, base-level documentation)

#### Early May

- JR/LoadTest equivalent infrastructures available
- Improved documentation/monitoring (feedback collected since March)
- Define metrics from next milestone
- <u>Deliverable</u>: fallback use-case

#### Early June

- + Organized job overflow to sites which are part of the integration instance
- Measure according to the metrics defined in previous milestone
- <u>Deliverable</u>: a report

#### August / September

- Touchbase with sites after few months of constant usage: is the service stable?
- Deliverable: interactive use-case
- Deliverable: disk-less T3 use-case

- The Popularity framework will be the system responsible for:
  - providing usage statistics on datasets/blocks on the grid.
    - information in terms of dataset name, remote site, local site, and user...
  - providing data service for further applications
    - ▶ e.g. a dynamic replica reduction agent



agent Take the already existing dashboard aggregator and summary table at dataset granularity

- validate the current summary table
- Extend the aggregator at block granularity:
  - enable CRAB sending block info to the dashboard collector
  - Pull and factorize the information from the dashboard and aggregate it

### "Victor" per CMS



Reduction Agent Reuse the ATLAS replica reduction model for the CMS central space clean-up



on CMS Replica

- Re-factorize the existing Victor code
  - Implementing a ATLAS and CMS plug-in
- Integrate CMS Victor to
  - Block Popularity Service
  - PhEDEx/SiteDB for Accounting
  - PhEDEx Request for Replica Reduction

### EOS per CMS



### Discussion : Disk-only (EOS) solution

- Constraints of EOS solution, compared to DEFAULT
  - Disk-only space management needs to be addressed carefully. We may need a dynamic data placement tool according to popularity (à la ATLAS)
  - Need small PhEDEx development (optimize staging via xrd3cp)
    - Note : EOS could just become a new PhEDEx site
  - Might be disruptive for CERN users at the beginning, but as lan remarked in the introduction, not changing a system because it is (more or less) working now is not a good strategy if there are better options for the future

### Proposed new Architecture (I)

- Basically, EOS should look almost like any other CMS Tier-2
  - PhEDEx node + optimize stager as done for CAF (currently CMSCAF going via stager\_get instead SRM)
- For data reading, need the redirector to go to either: root://eoscms// eos/cms/... or root://castorcms//castor/cern.ch/cms/... When opening root://<newRedirector>//...
  - Needs adaptation to TFC
  - Existing castorcms redirector already accomplishing something similar for CAF-T2 so expect this should be possible
- For writing, default is CASTOR, or EOS if specified
  - Needs adaptation of T0 code to be able to write to EOS
- Architecture needs to be compatible for both CERN (kerberos) and GRID (certificate) jobs. SRM interface to GRID jobs to EOS exists ("bestman" solution for ATLAS)

### Proposed new Architecture (II)

- Quotas in EOS :
- Volume quotas for users : hard and soft limit can be set, CMS needs to decide on a policy. Assumes that the mapping of GRID certificates to cern-account is working.
- Quotas for groups (e.g. CMS PH groups) : need to understand if we could map PhEDEx-groups to EOS-group quotas ? Maybe easier to do everything within PhEDEx ?
- Bandwidth quotas : option for the future
- Service Classes
  - Do we want to split EOS in different areas depending on reliability, replication definition ? Need to decide what is most suitable for CMS use-case.

## **CMS/EOS** Testing Time Schedule

### February-March

- TFC tests
- switch CMSCAF (CAF-TI) to xrootd
- test reading/writing from/to EOS or CASTOR via new redirector

### April-May

- Test new PhEDEx node + special stager
- Include Hammercloud tests
- Test mapping of GRID certificates to CERN account and SRM interface to EOS
- Integration of CAF-T2 into EOS
- May++
  - Adapt/Test T0 writing to EOS
  - Test Data Popularity Service on EOS 5



# **INFN** activities

# **Xrootd Regional Redirector**



# CMS performance test - 2011

- New CMS test, new framework, and new configurations:
  - Preparing the new tests to be reported to HEPIX meeting in may 2011
  - Server:
    - Lustre 2.0:
      - 3 RAID5 FS. Stripe-unit size: 128 KB. 5 Data disk each
    - Xrootd 3.0.0:
      - 13x1TB single disks. EXT3 FS
    - hadoop-0.20.2 (from <u>http://newman.ultralight.org/</u>)
      - 13x1TB single disks. EXT3 FS
  - Clients:
    - SLC5.4 kernel 2.6.18-194.11.3
    - Fuse: fuse-libs-2.7.4-8
    - FUSE mount on the client (rdbuffer=32768)



# Optimising the Single job



xrootd same machine

- "Hadoop opt"=> rdbuffer=32768
- The CMSSW (cacheHint,readHint,cacheSize) tuning parameters are always used and tested until the best result is found
- "blockdev --setra" on each drive, was tuned in order to find the best solution
- Lustre is not reported in the plot, but it was 83% of CPU efficiency

CPU%

It is possible to obtain the 80 same 60 performance with up to 4-5 40 concurrent job per single 20 native disk Native Disk hadoop 0 hadoop opt hadoop opt rem

# Performance Tests



- up to 116 concurrent jobs
- production farm used to run the jobs
- Each file on the server is used only by a single job
  - There is no "concurrency" on each file
- A single disk server:
  - 10Gbit/s network card
  - deep network testing to assure there are no network bottleneck
  - >400MB/s measured disk-to-network bandwidth

### Performance test: hadoop vs xrootd

- Running 56 concurrent cms analysis jobs
- Using 6 disks for xrootd
- Using 13 disks on hadoop installation
  - Reading data using "fuse optimized"
  - Single server: no "block replica"
- We have observed huge load on the server while running "hadoop test"
  - tuning "blockdev setra" did not improve the situation
  - increasing the memory for java produced only small improvements





### Performance tests: lustre vs xrootd

- Running 116 concurrent cms analysis jobs
- Reading -1TB of data
- Always measuring the CPU efficiency
  - This is an interesting parameter both from user's point of view and from a site admin
- The network usage of the two solution is completely different
- Different configuration were tested: it looks like this is the best result we can achieve
- In both cases the disk subsystem on the server is the bottleneck





%CPU

# Future Works

- Try to run the same tests with new CMSSW based on ROOT 5.28
  - We have to produce new files to do this test
- Testing also other use cases (different kind of analysis)
- Run tests on dCache using NFS4.1 (LNL will be actively involved)
- To start measuring the performance in case of "remote" access (both xrootd and NFS4.1)
  With different RTT? 10ms, 50ms,100ms







# **INFN** activities

## Layered deployment



- Xrootd provides only rudimentary management tools
  - e.g. filesystem migration, metadata backup,...
  - Also, documentation is scarce
- Several sites need to cater for different requirements
  - Multi-VO T2s, consolidated storage for different applications,...
  - Or just existing infrastructure to build upon (e.g. Trieste)
- Xrootd is highly efficient, very stable and simple to configure
  - But only in the "standard" use cases
  - Not very flexible. It is intended to be used "as is"
- Solution: xrootd on top of a parallel filesystem
  - Both GPFS (CNAF, CT, TS) and Lustre (TO, BA) in use




## Layered deployment



## Operational experience



## • Xrootd itself needs little maintenance

- See e.g. "native xrootd" deployment al LNL
- Also, getting better with age
- Releases are backward-compatible (no mandatory updates)
- Upgrade is usually painless

#### • Interaction with underlying FS can be messy

- Cross-optimisation (e.g. readahead conflicts)
- No support for redundant servers
  - Space double-counting
  - Xrd3cp failures

#### • At CNAF, e.g.:

• All servers are independent redirectors behind a DNS alias



🗖 In 📑 Out

## Various & sundry



- Very conservative data deletion policy in ALICE
  - Underlying FS tools allow to create different storage areas for highperformance and "cheap" storage
  - Just something we're thinking about in Torino
- Xrootd "Virtual Mass Storage" feature
  - Allows to create caches e.g. for interactive facilities
  - Under study in Torino, but already in use in several proof-based Analysis Facilities
- We use StoRM to provide SRM access to data
  - On top of Lustre/GPFS, alongside xrootd
  - Little integration needed: xrootd writes always as same user
  - No idea of performance not used by ALICE
- Plugin for TSM tape backend at Tier-1
  - Manages tape recalls directly from GPFS
  - By F. Noferini and v. Vagnoni

# INFN TI

# Disk storage at CNAF

- Large number of users with independent requirements
- 6.4 PB of disk on-line served by GPFS
  - 5 DDN S2A 9950
    - SATA disks of 2 TB for data
    - SAS disks of 300 GB for metadata
  - 11 EMC<sup>2</sup> 3-80
  - 1 EMC<sup>2</sup> 4-960
- GPFS disk servers 10 Gbit/s
  - 26 = 8(Atlas)+6(Alice)+12(CMS)
- GPFS disk servers 1 Gbit/s 60



# GPFS: multi-cluster environment

- Version
  - 3.2.1-23 and 3.4.0-3 (+efix)
- Multi Cluster environment
  - 1 cluster for WN (real) diskless
  - 1 cluster for VWN (virtual) diskless
  - 6 clusters for the larger experiments (Atlas, Alice, BaBar/SuperB, CMS, CDF, LHCb)
  - 2 clusters for the other experiments (Argo, AMS, Virgo, ...)
  - 2 CNFS clusters (software area, home directories)



# Mass Storage Sysytem

- CASTOR phased out on 15.02.2011
- GEMSS is in use by all LHC and non-LHC experiments

| Experiment | # tapes used | Tape space (TB) |
|------------|--------------|-----------------|
| LHCB       | 165          | 126.9           |
| CMS        | 2702         | 2357.9          |
| ATLAS      | 555          | 476.2           |
| ALICE      | 208          | 174.5           |
| ARGO       | 407          | 381.6           |
| AMS        | 53           | 47.7            |
| AGATA      | 80           | 74.8            |
| MAGIC      | 32           | 27.1            |
| PAMELA     | 75           | 68.9            |
| VIRGO      | 64 (ongoing) | 55.6 (+105)     |



# Building blocks of GEMSS system

In the last version the preload library is not needed: it is a purely posix system for both T1D0 and T0D1



# **GEMSS** layout



## Last year's statistics

- Native GPFS (only LAN)
  - Several GB/s sustained from disk servers to worker nodes
- GridFTP (mostly to/from WAN)
  - Up to I GB/s in reads and writes





## ATLAS GPFS ATLAS GRIDFTP





#### ATLAS TAPE TRAFFIC



## CMS GPFS

## CMS GRIDFTP





#### **CMS TAPE TRAFFIC**



#### LHCb GPFS

## LHCb GRIDFTP





#### LHCb TAPE TRAFFIC



**CNAF GPFS** 

## CNAF GRIDFTP





#### CNAF TAPE (LHC) CNAF TAPE (no LHC)







# Conclusions

- Starting from something that works now, it is needed to improve tools and strategies to be prepared to the increase in amount of data
- There is room for improvements not only at the computing infrastructure level but lot of work can be done in the application optimization (lots of things are already happening)
- Man power to keep to infrastructure running should be taken into account
- We have at least two "checkpoints" behind:
  - small improvements that could be introduced without disrupting the production infrastructure (fully in production by the end of 2011)
  - production ready after LHC shutdown (-2013-14)
- Xrootd shows a very good shape, but the support in long term should be taken into account (it is not a "standard")
  - while it could be easily adopted as the short term solution, in the long term we should keep the road open to other solutions
- Maybe INFN could be a bit more "active" in proposing new technologies and strategies