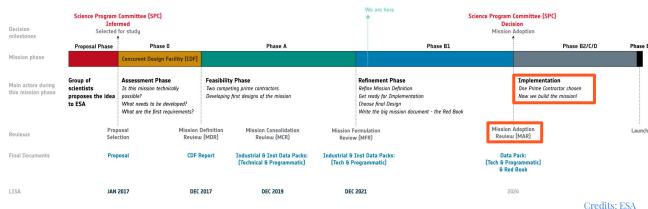
2022/10/13 Kick-off meeting Spoke 2 WP-3

Landscape and computational challenges for the LISA global fit


R. Buscicchio collaborators: M.Colpi, A.Sesana, D.Gerosa & al.

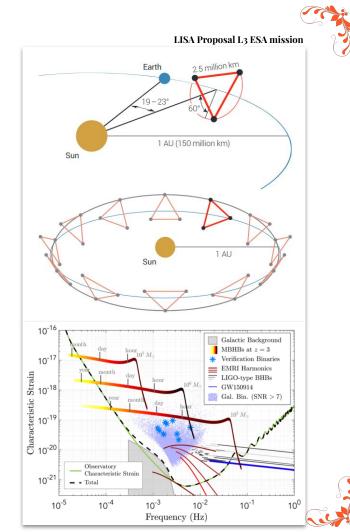
WAVE ASTRONOMY

- Mission Formulation Review 🗸
- Towards Mission Adoption:
 - Reshaping the collaboration: Performance Experts & Data Analysis Experts Groups
 - Red book
- Launch expected in 2034

Credits: NASA/JPL-Caitech/NASAEA/E CXC/STScl/GSFCSVS/S.Barke

Question: Are we ready to process LISA data? Answer: Data Challenges

- Waveforms
- Instrument response
- Likelihoods
- Global fit
- Population inference
- Get in touch for references and discussion!



- Long baseline: 2.5 Mkm
- Sensitivity bucket ~ mHz
- Data on a stick: 4 to 10 years, 3 "science" channels = 15 GB
- Source-rich sky: persisting & overlapping sources
- Time dependent response: that's new wrt ground-based detectors
- Noise/Signal distinction is blurry: "confusion" noise
- Dominating laser phase noise: synthetic interferometry

Waveform evaluations Key computational features

Bayesian parameter estimation: ~a few long-term, incremental, codebase developments worldwide (including UniMiB)

 10^{-16}

10-17

Characteristic Strain ₆₁₋01 Characteristic Strain ₆₁₋01 Characteristic Strain

10⁻¹⁹

10⁻²¹

 10^{-5}

Observatory Characteristic Strain

10-4

Total

- **Monochromatic (DWDs)**
- **Drifting sources (BBHs)**
- **Chirping sources (SMBBHs)**
- **Polichromatic (EMRIs)**
- Many unresolved ones (SGWBs)
- **Instrumental artifacts**
- Multiband sources »

computationally challenging

Question: Are we ready to search for all? Answer: Yes for some sources, other under development

10⁻³

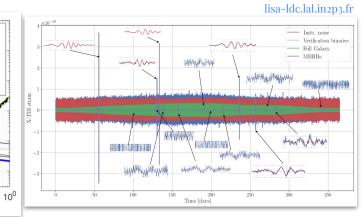
Frequency (Hz)

10-2

+noise

Galactic Background

Verification Binaries


MBHBs at z = 3

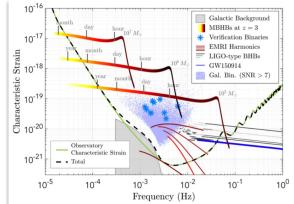
EMRI Harmonics

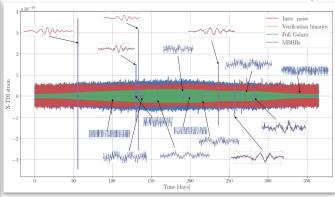
— LIGO-type BHBs GW150914

Gal. Bin. (SNR > 7)

 10^{-1}

Waveform evaluations Key computational features


Bayesian parameter estimation: ~a few long-term, incremental, code developments worldwide (including UniMiB)

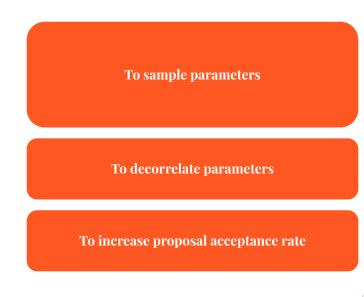


- Fast multi-sources waveforms >> slow
- Slow single-source bright waveforms»slow
- Only heterogeneous modelling is possible

>> Towards the global fit **<**<

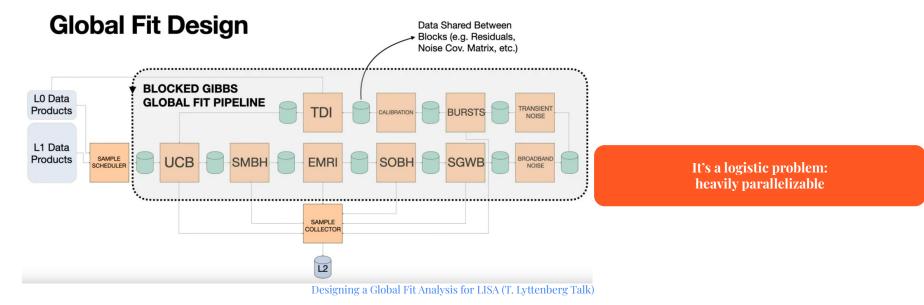
Question: Are we ready to search for all? Answer: Yes for some sources, other under development

lisa-ldc.lal.in2p3.fr


- Some source classes are GPU accelerated.
- \circ Some other are going to be
 - Chirping signals are inherited from ground-based detectors (+eccentricity)
 - Drifting signals are slowly inspiralling. Must track ~10⁵⁻⁶ signal cycles
- Surrogates
 - Leverage exact solutions from numerical relativity. Useful for massive sources. Require massive simulations to "train"
 - Reduced order models trained on neural networks: suitable for gradient based inferences

Computational challenges Likelihoods

- highly multimodal (multiple source inference):
 - issues are solvable on a statistical basis (label switching problem)
 - other just require massive computation
- highly curved likelihood surfaces
- $\circ \quad$ a zoo of stochastic samplers:
 - Nested sampling
 - Markov-Chain Montecarlo
 - Hamiltonian samplers
 - multithreading is mostly out-of-the-box
- Sometimes enhanced with
 - normalizing flows
 - genetic programming (not algorithms)
- gaussian process augmentation
- neural amortized proposals
- particle swarm optimizers



Computational challenges Global fit: the elephant in the room

Population inference:

Given the number of sources, established hierarchical likelihoods might be too slow. Not covered in this talk.

The end Questions?

