
Porting	to	GPU,	experience	
from	Experimental-HEP

Dr. Tony Di Pilato
tony.dipilato@cern.ch
13th October 2022



The	heterogeneous	computing	scenario

• CPUs development can no longer provide the highest 
computing performance that complex applications require

• GPUs have been largely considered as the suitable accelerators
to exploit for fast and parallel operations, due to their optimized 
architecture
§ Parallel-thinking approach is key for the design of new algorithms
§ Complex deep neural networks can be trained in a few hours rather 

than a few days 

Tony Di Pilato Porting to GPU, experience from Experimental-HEP 2



A	problematic	variety	of	choices	

• Several vendors…

Tony Di Pilato 3Porting to GPU, experience from Experimental-HEP



A	problematic	variety	of	choices	

• Several vendors…

… with different programming languages 

Tony Di Pilato 3Porting to GPU, experience from Experimental-HEP



A	problematic	variety	of	choices	

• Several vendors…

… with different programming languages 

Tony Di Pilato 3

Code duplication, 
hard to maintain!

Porting to GPU, experience from Experimental-HEP



Performance	portability

• Performance portability solutions have become an interesting solution
ØWrite code once, compile for different backends at the same time, execute on 

target platform

ØNot all the technologies provide close-to-native backend performance

• Portable code can be maintain easily and support new accelerators

• R&D with the Patatrack team @ CERN mainly focuses on 3 APIs
Ø Alpaka

ØKokkos

Ø SYCL OneAPI

Tony Di Pilato 4Porting to GPU, experience from Experimental-HEP



Performance	portability

• Performance portability solutions have become an interesting solution
ØWrite code once, compile for different backends at the same time, execute on 

target platform

ØNot all the technologies provide close-to-native backend performance

• Portable code can be maintain easily and support new accelerators

• R&D with the Patatrack team @ CERN mainly focuses on 3 APIs
Ø Alpaka

ØKokkos

Ø SYCL OneAPI

Tony Di Pilato 4

Chosen by the CMS experiment 
as the performance portability 
technology for Run 3

Porting to GPU, experience from Experimental-HEP



Performance	portability

• Performance portability solutions have become an interesting solution
ØWrite code once, compile for different backends at the same time, execute on 

target platform

ØNot all the technologies provide close-to-native backend performance

• Portable code can be maintain easily and support new accelerators

• R&D with the Patatrack team @ CERN mainly focuses on 3 APIs
Ø Alpaka

ØKokkos

Ø SYCL OneAPI

Tony Di Pilato 4Porting to GPU, experience from Experimental-HEP

Discarded by CMS for multiple 
reasons (lack of performance 
wrt alpaka, …)



Performance	portability

• Performance portability solutions have become an interesting solution
ØWrite code once, compile for different backends at the same time, execute on 

target platform

ØNot all the technologies provide close-to-native backend performance

• Portable code can be maintain easily and support new accelerators

• R&D with the Patatrack team @ CERN mainly focuses on 3 APIs
Ø Alpaka

ØKokkos

Ø SYCL/OneAPI

Tony Di Pilato 4Porting to GPU, experience from Experimental-HEP

Promising candidate on 
longer term, but still with 
several missing features



The	alpaka portability	library

• Abstraction Library for Parallel Kernel Acceleration
§ Developed and maintained at HZDR (Helmholtz-Zentrum-Dresden-Rossendorf) and 

CASUS (Center for Advanced Systems Understanding)

• C++ header-only library
§ No need for installation
§ Currently on C++17 standard

• Supports a wide range of compilers (g++, clang, …)

• Several backends supported
§ CPU serial and parallel execution (std::thread or TBB)
§ NVIDIA GPU (CUDA)
§ AMD GPU (HIP/ROCm)
§ Intel GPU and FPGAs (SYCL) under development

Tony Di Pilato 5Porting to GPU, experience from Experimental-HEP

https://github.com/alpaka-group/alpaka

https://github.com/alpaka-group/alpaka


Alpaka:	what	to	know

Tony Di Pilato 6Porting to GPU, experience from Experimental-HEP

• Programming strategy inspired by CUDA
§ Easy porting CUDA-to-alpaka

§ Same way of organizing the work division – Grids-Blocks-Threads + additional 
abstraction layer Elements that can be exploited for vectorization



Alpaka:	what	to	know

Tony Di Pilato 6Porting to GPU, experience from Experimental-HEP

• Programming strategy inspired by CUDA
§ Easy porting CUDA-to-alpaka

§ Same way of organizing the work division – Grids-Blocks-Threads + additional 
abstraction layer Elements that can be exploited for vectorization

• Performance is close to the native backend
§ No overhead wrt to native CUDA or HIP

§ The serial backend showed sometimes slightly better performance wrt to native 
CPU code (but might be because of alpaka’s optimization of the code)



Alpaka:	what	to	know

Tony Di Pilato 6Porting to GPU, experience from Experimental-HEP

• Programming strategy inspired by CUDA
§ Easy porting CUDA-to-alpaka

§ Same way of organizing the work division – Grids-Blocks-Threads + additional 
abstraction layer Elements that can be exploited for vectorization

• Performance is close to the native backend
§ No overhead wrt to native CUDA or HIP
§ The serial backend showed sometimes slightly better performance wrt to native 

CPU code (but might be because of alpaka’s optimization of the code)

• Alpaka objects behave like shared_ptrs à must be passed by value or 
const reference



Alpaka:	what	to	know

Tony Di Pilato 6Porting to GPU, experience from Experimental-HEP

• Programming strategy inspired by CUDA
§ Easy porting CUDA-to-alpaka
§ Same way of organizing the work division – Grids-Blocks-Threads + additional abstraction layer 

Elements that can be exploited for vectorization

• Performance is close to the native backend
§ No overhead wrt to native CUDA or HIP
§ The serial backend showed sometimes slightly better performance wrt to native CPU code (but 

might be because of alpaka’s optimization of the code)

• Alpaka objects behave like shared_ptrs à must be passed by value or const
reference

• native buffers (vectors, arrays, …) must be ported to alpaka buffers, which don’t 
have a default constructor



Current	developments	with	alpaka

Tony Di Pilato 7Porting to GPU, experience from Experimental-HEP

• The standalone version of the CMS pixel track and vertices 
reconstruction has been fully ported to alpaka

§ CMSSW-like framework

§ Optimized memory management through the caching allocator which reuses memory

§ Code is compiled once, and can be run on multiple backends while splitting the jobs 
between them

• The CLUE clustering algorithm for the future CMS-HGCAL detector has 
been integrated in the same type of framework and ported to alpaka

§ 2D version (published in 2020) has been ported from native cuda to alpaka

§ The new 3D version has been ported from native CMSSW serial implementation to 
alpaka à Performance will be presented at ACAT late this month

https://www.frontiersin.org/articles/10.3389/fdata.2020.591315/full


Current	developments	with	alpaka

Tony Di Pilato 8Porting to GPU, experience from Experimental-HEP

• alpaka is being easily integrated in CMSSW!
§ some refinements are still ongoing

§ we should be able to use it in production after the Christmas break

• A simple guide to port CUDA code to alpaka in CMSSW (and not only) can be 
found here

§ Some helper functions are user-defined in the testbed framework and not natively 
available (you can find them here, i.e. in alpakaMemory.h and alpakaWorkDiv.h)

https://codimd.web.cern.ch/jy41qmAtQQWECYJ2B3FDFA
https://github.com/tonydp03/pixeltrack-standalone/tree/master/src/alpaka/AlpakaCore


Sample	code	comparison	(CPU-alpaka)

Tony Di Pilato 9Porting to GPU, experience from Experimental-HEP

Pointers to device 
memory passed to kernels

Executes the task (similar to cudaStream)

user-defined namespace that contain all the needed 
symbols (Platform , Device, Queue, BufferType)

Missing default constructor



Sample	code	comparison	(CUDA-alpaka)

Tony Di Pilato 10Porting to GPU, experience from Experimental-HEP



Sample	code	comparison	(kernels)

Tony Di Pilato 11Porting to GPU, experience from Experimental-HEP

CPU serial: loops over all 
the points

GPU CUDA: each thread 
execute the same instruction 
with a different point 

CPU/GPU alpaka: same as 
CUDA, with a user-defined 
helper function that accounts 
for the additional elements
abstraction layer

Call KernelComputeHistogram() instead of using the <<< … >>> syntax



The	alpaka portability	library

Tony Di Pilato 12Porting to GPU, experience from Experimental-HEP

• The latest alpaka documentation can be found here
§ Cheatsheet available

§ Deeper explanation of the abstraction layers

§ Various details

• alpaka has been tested on
§ CPU (serial and TBB backends)

§ NVIDIA GPU (Tesla T4, V100, A10)

§ AMD GPU (preliminary tests, as AMD GPU are not supported yet in CMSSW)

and showed equivalent performance to the native backends

https://alpaka.readthedocs.io/en/latest/index.html


SYCL/oneAPI

• Abstraction layer for heterogeneous computing
§ Maintained by Khronos group

• Intel developed DPC++, an open source project to introduce SYCL for LLVM 
and oneAPI

• Several implementations to support different backends
§ Intel CPUs, Intel GPUs, Intel FPGAs

§ NVIDIA GPU (experimental - tested)

§ AMD GPU (experimental)

• As for now, SYCL is still in active development and not considered for 
complex applications

Tony Di Pilato 13Porting to GPU, experience from Experimental-HEP



SYCL:	what	to	know

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Primary goal is to achieve closer convergence with ISO C++
§ In theory, all the host code can be compiled with a standard C++ compiler

14



SYCL:	what	to	know

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Primary goal is to achieve closer convergence with ISO C++
§ In theory, all the host code can be compiled with a standard C++ compiler

• Performance can be higher than the native backend on CPU
§ SYCL optimizes CPU execution through TBB and vectorization

14



SYCL:	what	to	know

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Primary goal is to achieve closer convergence with ISO C++
§ In theory, all the host code can be compiled with a standard C++ compiler

• Performance can be higher than the native backend on CPU
§ SYCL optimizes CPU execution through TBB and vectorization

• Official tool to support parallel programming on future (yet unreleased) 
Intel GPUs

14



SYCL:	what	to	know

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Primary goal is to achieve closer convergence with ISO C++
§ In theory, all the host code can be compiled with a standard C++ compiler

• Performance can be higher than the native backend on CPU
§ SYCL optimizes CPU execution through TBB and vectorization

• Official tool to support parallel programming on future (yet unreleased) 
Intel GPUs

• Some C++ features are unavailable due to portability reasons (i.e. 
usage of function pointers or call virtual functions inside kernels)

14



SYCL:	what	to	know

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Primary goal is to achieve closer convergence with ISO C++
§ In theory, all the host code can be compiled with a standard C++ compiler

• Performance can be higher than the native backend on CPU
§ SYCL optimizes CPU execution through TBB and vectorization

• Official tool to support parallel programming on future (yet unreleased) 
Intel GPUs

• Some C++ features are unavailable due to portability reasons (i.e. 
usage of function pointers or call virtual functions inside kernels)

• CUDA and HIP backends are still experimental

14



SYCL:	what	to	know

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Primary goal is to achieve closer convergence with ISO C++
§ In theory, all the host code can be compiled with a standard C++ compiler

• Performance can be higher than the native backend on CPU
§ SYCL optimizes CPU execution through TBB and vectorization

• Official tool to support parallel programming on future (yet unreleased) Intel GPUs

• Some C++ features are unavailable due to portability reasons (i.e. usage of 
function pointers or call virtual functions inside kernels)

• CUDA and HIP backends are still experimental

• Programming strategy slightly different from CUDA and porting requires generally 
more efforts

14



SYCL:	what	to	know

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Primary goal is to achieve closer convergence with ISO C++
§ In theory, all the host code can be compiled with a standard C++ compiler

• Performance can be higher than the native backend on CPU
§ SYCL optimizes CPU execution through TBB and vectorization

• Official tool to support parallel programming on future (yet unreleased) Intel GPUs

• Some C++ features are unavailable due to portability reasons (i.e. usage of function pointers or call 
virtual functions inside kernels)

• CUDA and HIP backends are still experimental

• Programming strategy slightly different from CUDA and porting requires generally more efforts

• Several hidden compiler flags that performs optimizations
§ In our experience, this sometimes leads to different and/or unexpected results wrt to native application

14



Current	developments	with	SYCL

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• The standalone version of the CMS pixel track and vertices reconstruction is being 
ported to SYCL

§ Several issues to be solved and missing features

§ The CUDA-compatible compiler for SYCL (experimental) cannot be used in a complex 
framework (still investigating)

• The CLUE clustering algorithm has been integrated in the same type of 
framework and ported to SYCL

§ Only 2D version (published in 2020) has been ported from native cuda to SYCL for now

• A simple and experimental guide to port CUDA code to SYCL can be found here

• Tests have been made on Intel CPUs, unreleased Intel GPU and the same NVIDIA 
GPUs mentioned earlier in this talk 

15

https://www.frontiersin.org/articles/10.3389/fdata.2020.591315/full
https://codimd.web.cern.ch/79K6te6tQvSbUuH_F9hKjQ


Sample	code	(kernels)

Tony Di Pilato 16Porting to GPU, experience from Experimental-HEP

SYCL: Work division 
is similar to CUDA, 
but different syntax



Sample	code	comparison	(kernel	
launch)

Tony Di Pilato 17Porting to GPU, experience from Experimental-HEP

SYCL: kernel 
launched as a lambda

alpaka: kernels are 
enqueued in task 
objects

CUDA baseline



Final	considerations

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Performance portability libraries are a must-seeked solution for large HPC 
centers

§ Nowadays, it is impossible to get the very same high-performance device on each machine of a 
cluster due to many reasons

§ Intel is coming into the “GPU-game” in the near future

• The impression that we got in the last year(s) of testing is that the best option (if 
NVIDIA GPUs are being used) is to currently use alpaka for several reasons:

1. Can also exploit AMD GPUs in heterogeneous data centers

2. Its syntax is easy to understand if CUDA is known, and porting is relatively easy

3. SYCL backend is also under development, so alpaka is expected to support also Intel FPGAs 
and GPUs in future

18



Final	considerations

Tony Di Pilato Porting to GPU, experience from Experimental-HEP

• Is it worth considering SYCL into the game? YES

• The main reason is that the team maintaining SYCL is consolidated and has a 
stable financial support for the future (Intel is somewhere there, behind the 
curtain)

• The alpaka team relies on a few people (although funds are secured until 2027 
at HZDR and 2038 at CASUS) and sometimes struggles to support users’ 
requests

§ In HEP (in particular CMS @ CERN), Dr. Andrea Bocci is the most qualified person to give 
additional information about alpaka and its usage in CMSSW. He often open requests/issues 
as a user and have active discussions with the alpaka team (and sometimes implements the 
needed features himself).

19

mailto:andrea.bocci@cern.ch

