

Event Reconstruction Techniques

Maurizio Martinelli University of Milano Bicocca

CN HPC Spoke2 Kickoff meeting 13.10.2022

Subject Areas

Trigger Infrastructure Vertexing and Tracking Particle Identification Events' Classification

Maurizio Martinelli - Event Reconstruction Techniques | 13.10.2022

Trigger Infrastructure

Maurizio Martinelli - Event Reconstruction Techniques | 13.10.2022

Trigger Infrastructure

Anomaly Detection and Model-Independent Trigger Dini, Gennai, Govoni (MIB) + Pazzini, Tosi, Zanetti (PD)

Heterogeneous and Portable Event Reconstruction

Di Florio, Pompili (BA)

4

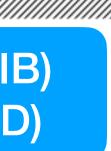
Anomaly Detection and Model-Independent Trigger

Trigger for HL-LHC (CMS-oriented)

- Ultimate aim: a trigger for anomaly detection
- FPGA vs GPU: lower performance, but also much lower power consumption
- Reasonable aim in the 3 years of the CN HPC: develop expertise on running AutoEncoders on a FPGA infrastructure Learn how to write FPGA firmware and to deal with the FPGA hardware
- Project: create a minimal testbed of a FPGA cluster of ~3 FPGA to test connections, data transfers and analysis Possibly on site @MIB for developing the hardware expertise
- Requirements: ~3 FPGA and manpower (1 TD) to create the testbed and write the firmware

Training on firmware writing is also needed (WP4?)

Dini, Gennai, Govoni (MIB) Tosi, Pazzini, Zanetti (PD)



Heterogeneous and Portable Event Reconstruction

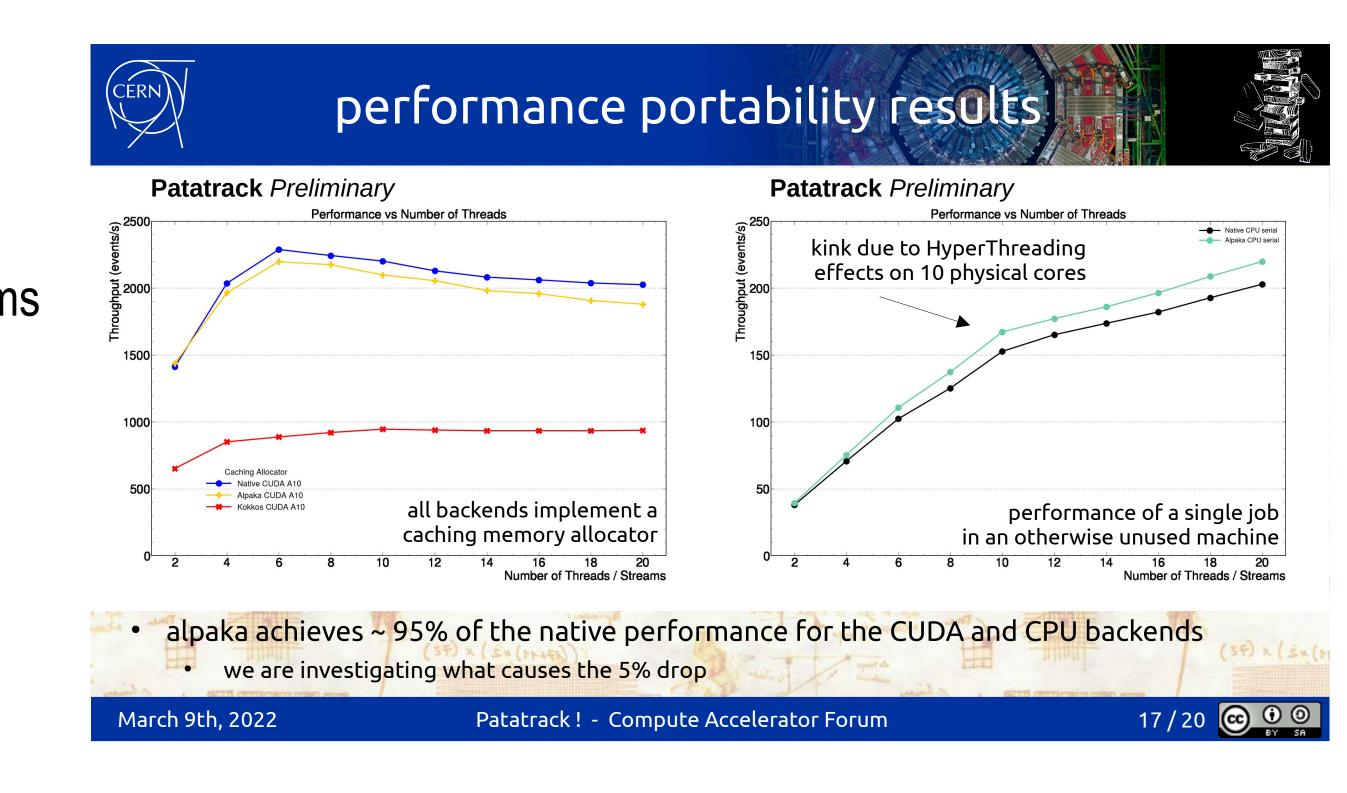
Heterogeneous Trigger Reconstruction

- Aim: 50% of CMS reconstruction code on GPU within 3 years
- Use a portability layer to simplify and accelerate the transition

Development ongoing on <u>Alpaka</u>, a portability layer that allows to run the same code on various platforms without loss of performance

- Project: Port most of CMS trigger reconstruction to Alpaka
- Testbed already in place
- **Requirements: manpower (1 TD?)**

Di Florio, Pompili (BA)



6

Vertexing and Tracking

7

Maurizio Martinelli - Title | 10.10.2016

Vertexing and Tracking

GNN for Pattern Recognition

Pazzini, Tosi, Zanetti (PD)

ML for 4D Vertexing @ HL-LHC

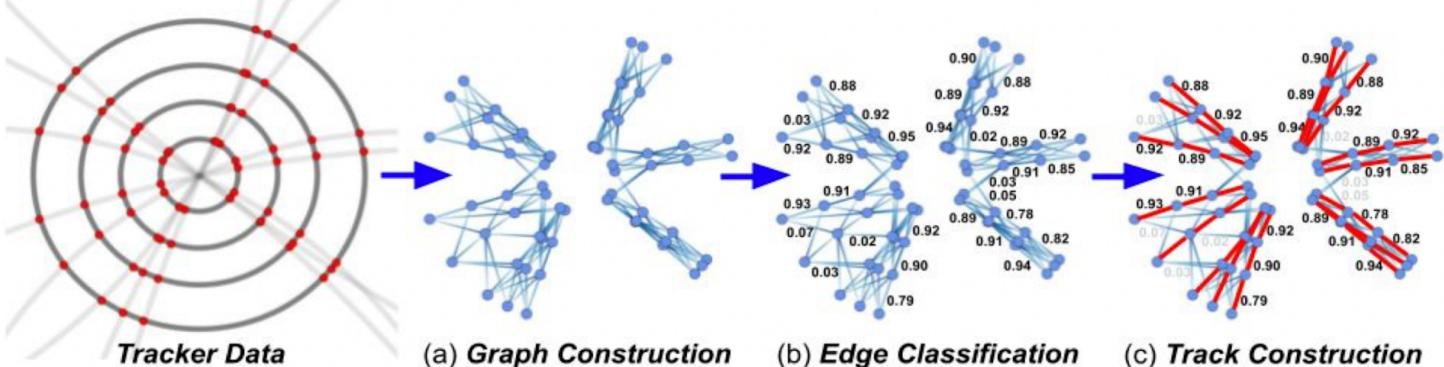
• Candelise, Della Ricca, Zaccolo (TS)

Maurizio Martinelli - Event Reconstruction Techniques | 13.10.2022

GNN for Pattern Recognition

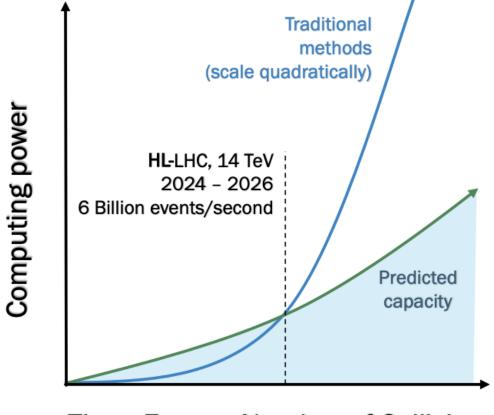
Trending Topic in HEP

- Promising performance of GNN in HEP already shown GNNs shown successful in associating hits. They can capture the inherent sparsity of much physics data and their manifold and relational structure Challenge is mainly from the very large size of the training graphs \rightarrow filtering
- Goal: test GNN performance on CMS Phase2 simulation constructing the graph by using edge classifier and clustering techniques
- Current testbed: Ixplus-gpu (T4 92GB RAM) Studies on load and throughput to be done; Probably the larger the RAM the better



Vertexing and Tracking

Tosi, Pazzini, Zanetti (PD)



Time, Energy, Number of Collisions

nodes \leftrightarrow hits edges \leftrightarrow tracks

(c) Track Construction

ML for 4D Vertexing @ HL-LHC

High Pileup in Various Reconstruction Algorithms

- Adding the time coordinate to hits may mitigate the problem by reducing combinatorics and secondary hits
- Various studies ongoing in ALICE and CMS Multi-charm hadrons and exotic states in high-multiplicity and high-density conditions (ALICE) Heavy-flavour tagging of beauty and charm quarks (CMS)
- Project: Extend tracking and vertexing ML algorithms by adding the time information at track level, in particular for cleaning secondary vertices from pile-up
- Testbed: currently 1.1k CPUs @ INFN-TS; considerations ongoing about GPU
- Requirements: 1 RTDA + 1PhD to be hired in 2023
- Synergies: De Filippis (PoliBA) (tracking @ HL-LHC)

Candelise, Della Ricca, Zaccolo (TS)

Particle Identification

Maurizio Martinelli - Event Reconstruction Techniques | 13.10.2022

Particle Identification

ML for TOP reconstruction in Belle II

• Gaz, Stroili (PD)

ML for Particle ID in Heavy Ion Experiments

• Volpe (BA)

ML for Particle ID @ FCC-ee

• De Filippis (BA), Gorini (SA)

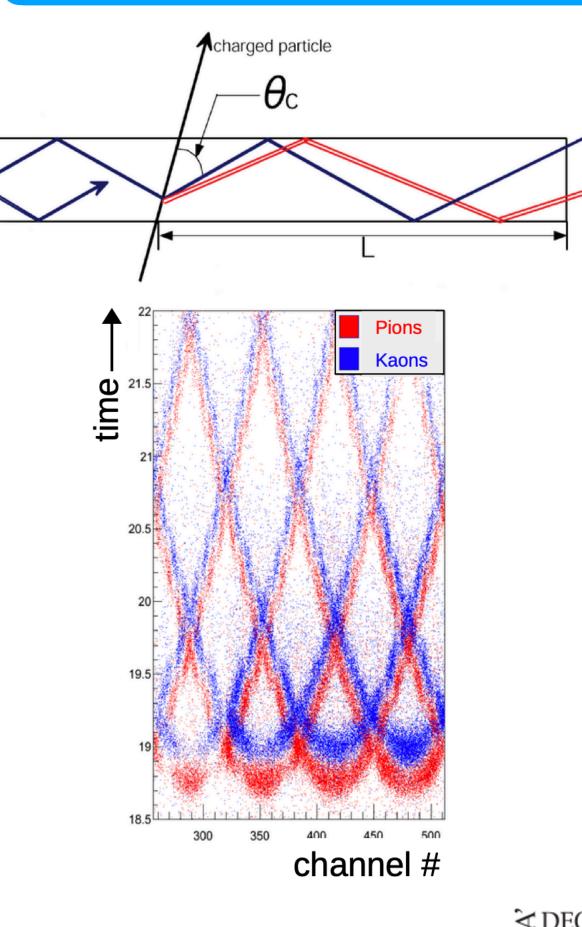
12

ML for TOP Reconstruction in Belle II

Pattern Recognition of Cherenkov Photons

- TOP in Belle II: a Cherenkov detector
- Currently using likelihood to identify particle Based on perfect knowledge of the detector geometry
- **Project: use ML for the pattern recognition** The algorithm can learn on data and track changes over time Preliminary studies showed potential but extreme sensitivity to training
- Testbed and Production: cloud resources in PD
- Request: 1 PhD

Gaz, Stroili (PD)



UNIVERSI

ML for Particle ID in Heavy-Ion Experiments

Cherenkov Photons in High Multiplicity Environment

- Particle Identification from momentum and Cherenkov photon emission angle is very challenging in high-multiplicity environments
- Goal: develop a ML approach to Cherenkov rings reconstruction and association
- Testbed: ReCaS (BA) with CPU and GPU
- Personnel: TBD

Volpe (BA)

ML for Particle ID @ FCC-ee

ML on Energy Deposit

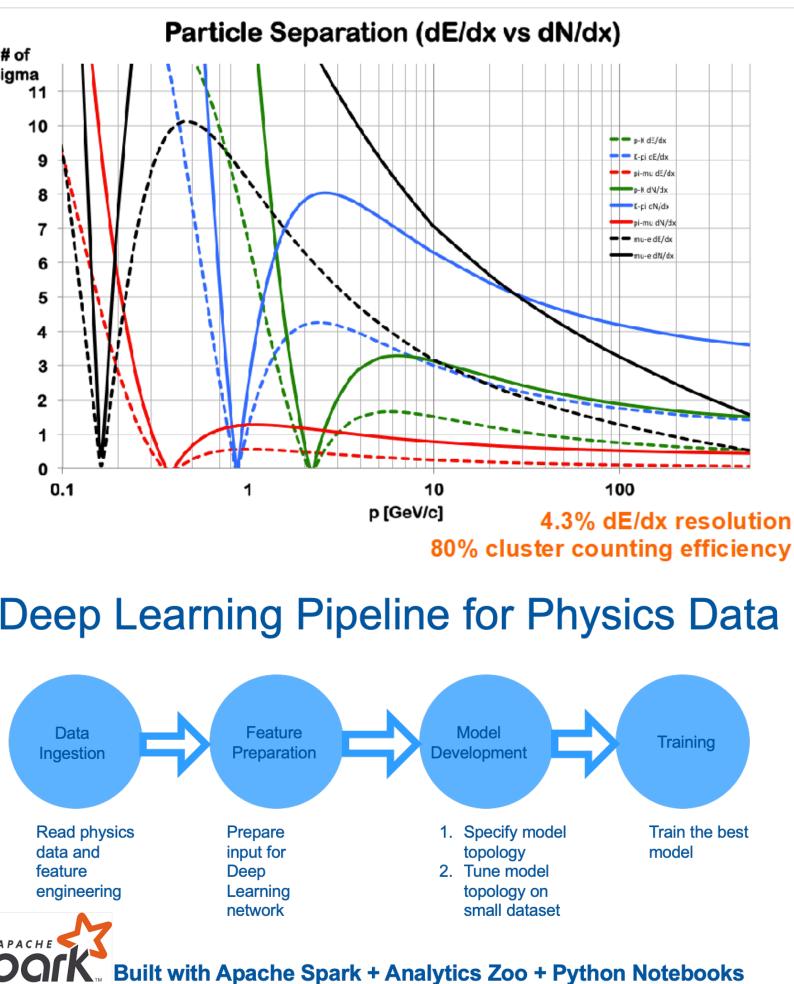
- Goal: develop a charged particle identification for pions, kaons, protons, muons and electrons, based on the sub-detectors response (mainly a drift chamber for IDEA experiment at FCC-ee), by using machine learning techniques (one-vs-rest, one-vs-one and multi-classification) - DNN and GNN could be the best tools to combine the information from various detectors effectively, to be compared with the cluster counting technique (dN/dx)
 - the performance of the machine learning techniques for PID are also measured in terms of signal to background discrimination in the context of physics analysis for heavy flavor measurements

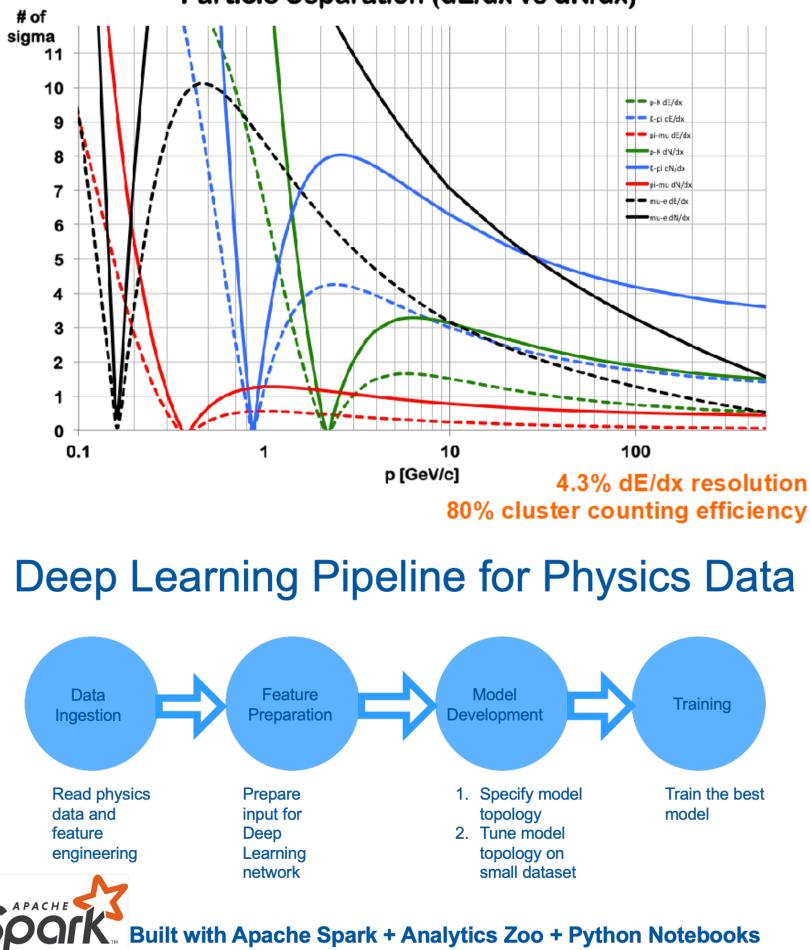
Pipeline and testbed:

- deep learning pipeline to be setup on a testbed
- cluster of 5 machine handled by Apache Spark + Analytics Zoo/BigDL for
- hyperparameter optimization (using AnalyticsZoo / Big DL)

- 5 TB data as an input

De Filippis (BA), Gorini (SA)





15

Events' Classification

16

Events' Classification

ML Regression for $H \rightarrow \tau \tau$

• Di Nardo, Gennai (MIB)

Anomaly Detection and Graph Neural Networks

Ippolito (RM1)

Heavy-Flavor Tagging in ATLAS

Fazio, Meoni, Tassi (CAL)

Maurizio Martinelli - Event Reconstruction Techniques | 13.10.2022

ML Regression for H $\rightarrow \tau \tau$

ML Regression for $H{\rightarrow}\tau\tau$

- Challenging final state for Higgs and BSM Large di-jet background contamination; non-leptonic triggers at low momenta
- Goal: develop a network based on kinematics output to reconstruct faster the events; future goal to add more low-level quantities in the network
- Testbed: actual training on CPU (Tier3-CMS @MIB); GPU may be needed for adding low-level quantities, but they are available on site
- Production: available resources on site.

Di Nardo, Gennai (MIB)

ic triggers at low momenta utput to reconstruct faster the ties in the network IB); GPU may be needed for le on site

Anomaly Detection and Graph Neural Networks

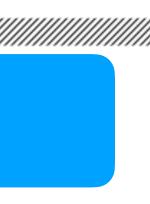
Finding What We Are Not Searching For

- Use only background sample for training and identify events that are different from the rest
- Ongoing Project: Train GNNs on toys from LHC Olympics dataset (topocluster in events with at least two large-radius jets)

In the network each node is a topocluster and connections are mad by edges that are weighted by the relative distance among the nodes

- Goal:
 - 1) develop an algorithm to discriminate between {1,2,multi}-prong jets 2) classify the event by adding further info to the topocluster (e.g. E_T) Will need porting the proof of principle to ATLAS data
- **Resources: currently working on GPU RTX 3090 24GB on site** Dataset: 1M events, 5GB; limited by I/O: processing 50 events/s with 700 topoclusters
- Testbed: 1 GPU more powerful; improved I/O (optimised software layer)
- **Production: Much larger datasets**

Ippolito (RM1)



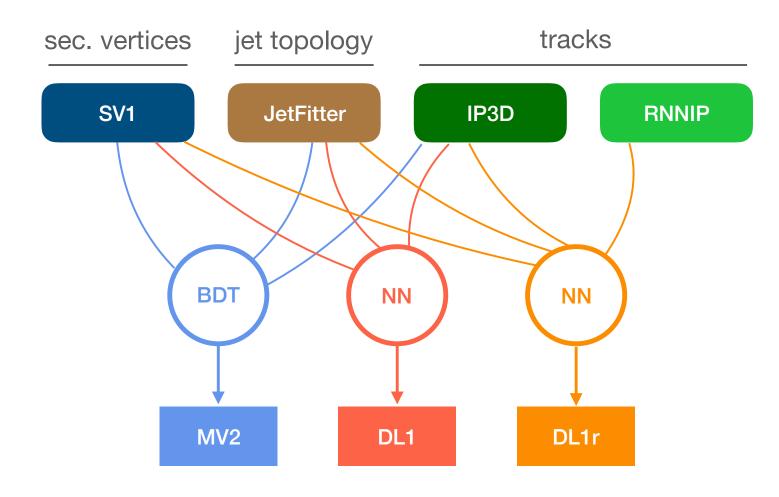
Heavy Flavor Tagging ATLAS

Develop b-tagging Algorithms

- Improve DL1, DL1r (latest algorithms by ATLAS) High-level taggers built on top of ATLAS low-level taggers in a NN Alternatively work on the "Deep Sets" approach
- Goal: Validate different NN topologies; use more low-level information; be as much as possible detector-independent
- Testbed: currently ReCaS Cosenza available (~3.5k CPU); may need GPU
- **Request: Manpower (1 TD?)**

Fazio, Meoni, Tassi (CAL)

The ATLAS strategy for b-tagging

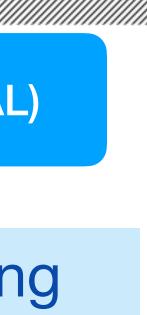


- MV2 vs. DL1: different architecture, same inputs
- DL1r: also add RNNIP

Philipp Windischhofe

20

27



Maurizio Martinelli - Event Reconstruction Techniques | 13.10.2022

Requests for Test Bed Activities

Topic	
Anomaly Detection and Model-Independent Trigger	
Heterogeneous and Portable Event Reconstruction	
GNN for Pattern Recognition	
ML for 4D Vertexing @ HL-LHC	
ML for TOP Reconstruction in BELLE II	
ML for PID in Heavy-Ion Experiments	
ML for PID @ FCC-ee	
ML Regression for H→ττ	
Anomaly Detection and GNN	
Heavy Flavor Tagging in ATLAS	

G

PU	FPGA	DISK	Personnel
_	~3	_	1 TD
-	_	_	1 TD
1	_	?	_
1	_	?	1 TD + 1 PhD
-	_	_	1 PhD
-	_	_	TBD
-	_	5 TB	_
-	_	_	_
1	_	100 GB	_
1	_	5 TB	1 TD

BIC

22

Requests for Production

No Requests

- A few projects have already the necessary resources for the testbed and production phase ML for TOP Reconstruction in Belle II; ML for PID in Heavy-Ion Experiments; ML Regression for $H \rightarrow \tau \tau$
- The trigger infrastructure ones do not really need a production environment since the testbed will prove the technology to use in the experiment at CERN

Extrapolations

- All the other projects will need a production system with much larger capabilities than the testbed to produce the final result The common denominator of these projects is the use of GPU, therefore I would naively suggest that a reasonably large cluster with a few powerful GPUs (5? 10?), fast disks (2TB/GPU?) and a reasonably large data storage (50TB?) will be
- enough.

Summary

- Many thanks to everybody that has provided feedback on my requests and helped me draft this presentation
- I've learned a lot about many different and promising areas of research at the boundary of HEP and ML
- I hope that it will help the WP coordinators to get a more consistent picture of what we need

24

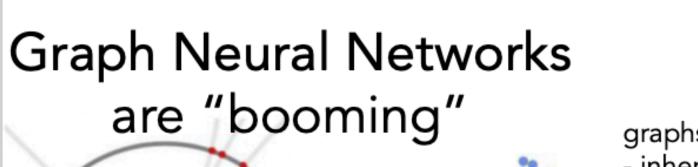
Outline

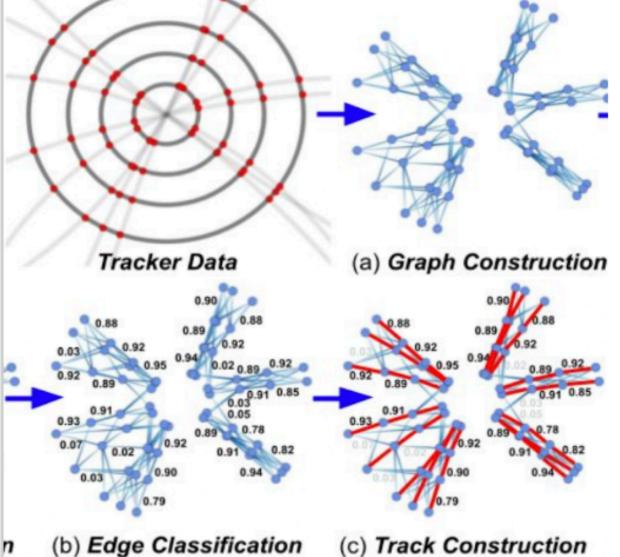
25

Maurizio Martinelli - Title | 10.10.2016

<u>GNN for track reconstruction</u>

HL-LHC brings many computational challenges \rightarrow the number of tracks increases by x10 \rightarrow the vertex density by x5 and the current -traditional- approach scales almost quadratically !





graphs can capture

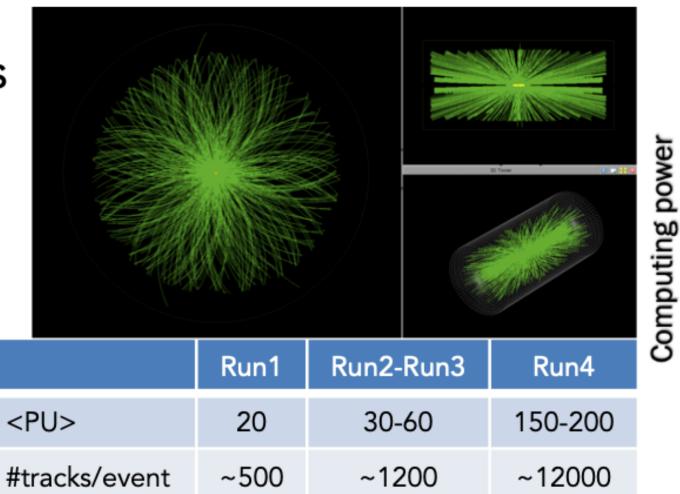
- inherent sparsity of much physics data
- the manifold and relational structure of much physics data

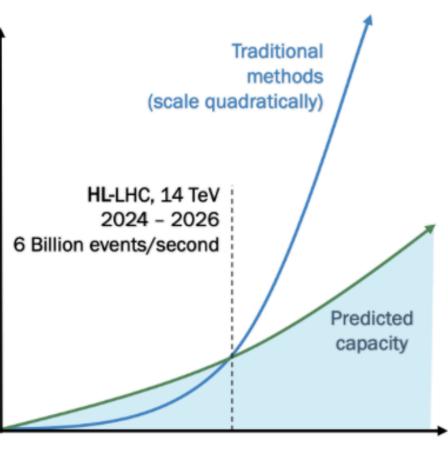
<PU>

⇒ conversion to and from graphs can allow manipulation of dimensionality

- graph nodes \rightarrow tracker hits
- graph edges \rightarrow tracks

Courtesy Mia Tosi (PD)





Time, Energy, Number of Collisions

track properties may be estimated using ML and GNNs

⇒ current work is focused on graph construction using edge classifier and clustering techniques

computational performance :

it would be desirable to have <u>at least a ×1.5 – 2 improvement</u>

"but current gains are unknown and not possible to estimate without a detailed study" -O&C R&D snapshot

physics performance :

it would be desirable to

- keep the current efficiency and possibly reduce the fake rate
- consider the displaced tracks as well
- exploit the time information

questions :

- which is the cost in terms of RAM?
- which is the robustness w.r.t. the data taking conditions ? (both the bad components and the misalignment effects)

Courtesy Mia Tosi (PD)

currently, server equipped w/ T4 and 92 GB of RAM

1

UNIVERS BICO

27

ML for Particle ID @ FCC-ee

De Filippis (PoliBA), Gorini (UniSA)

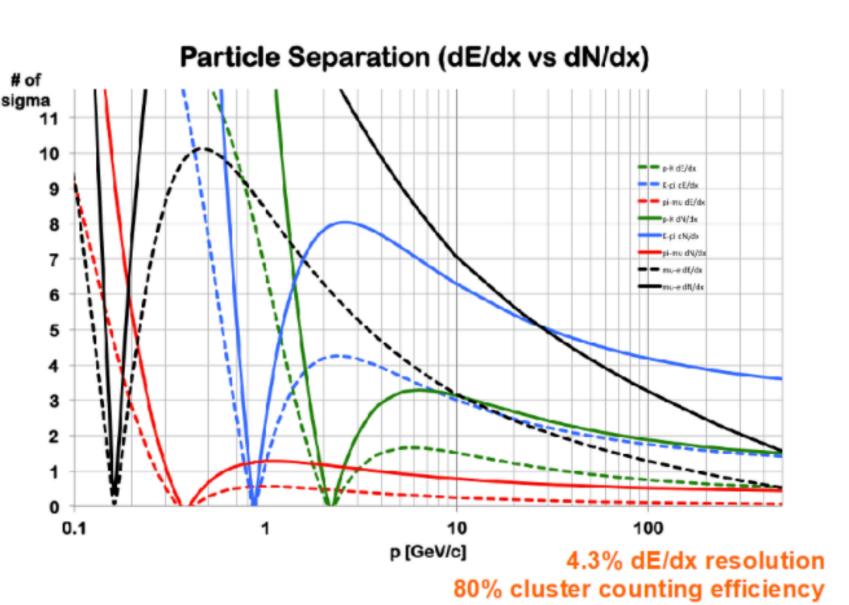
Goal: develop a charged particle identification for pions, kaons, protons, muons and electrons, based on the sub-detectors response (mainly a drift chamber for IDEA experiment at FCC-ee), by using machine learning techniques (one-vs-rest, one-vs-one and multi-classification)

- DNN and GNN could be the best tools to combine the information from various detectors effectively, to be compared with the cluster counting technique (dN/dx)
- the performance of the machine learning techniques for PID are also measured in terms of signal to background discrimination in the context of physics analysis for heavy flavor measurements

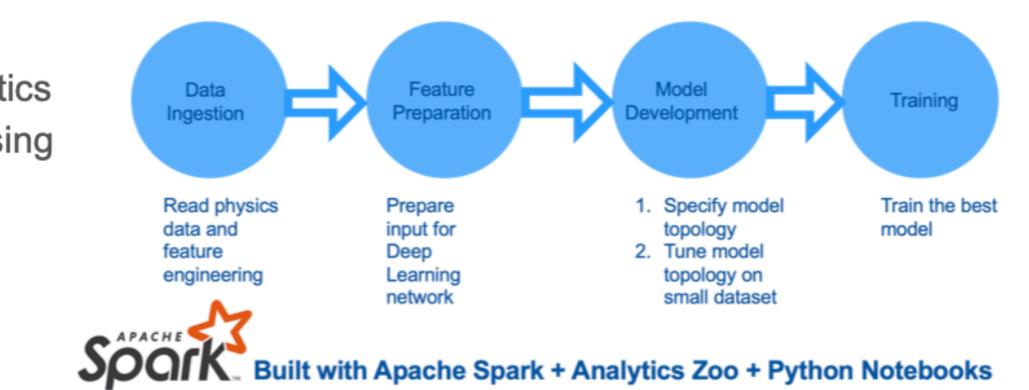
Pipeline and testbed:

- deep learning pipeline to be setup on a testbed
- cluster of 5 machine handled by Apache Spark + Analytics optimization Zoo/BigDL for hyperparameter (using AnalyticsZoo / Big DL)
- 5 TB data as an input

Courtesy Nicola De Filippis (BA)



Deep Learning Pipeline for Physics Data



UNIVERSIT

28

