Luigi Calligaris CMS Pisa meeting 13/01/2011

UPDATES ON J/PSI POLARIZATION

Outline

- Data used for this analysis
- Definiton of sidebands
- Simulations on the contamination of the background by the signal, in the sidebands
- P_T dimuon distribution for different triggers
- Cos θ and φ distributions in different reference frames of the positive muon

Data used in the analysis

- Used data from October 30th production
- Run 2010A data
 - HLT_DoubleMu0
 - HLT_Mu0_TkMu0_Jpsi
- Run 2010B data
 - HLT_Mu0_TkMu0_OST_Jpsi
 - HLT_Mu0_TkMu0_OST_Jpsi_Tight_v1
- Implementing now code for new released data TTrees
 - Nov 4th ReReco Dec 6th production

Defining Sidebands

Left sideband: from 2.7 GeV/c² to 5σ left of the J/ ψ peak

Right sideband: from 3σ right of the peak to 3.5 Gev/c²

The peak **position** and σ depend on the $|\eta|$ bin being considered. This is shown in the figure on the right, a 2D plot of events accepted into the sidebands in the $|\eta| - M_{\mu\mu}$ plane

Contamination of the SB with signal

- Took a MC sample of dimuons coming from J/ψ decay, with detector and FSR smearing
- Estimated the amount of signal falling into the left sideband due to FSR tail
 - Total: 1.7%
 - Worst: 3.8% (low P_T, mid rapidity)
 - Best: 0.7% (high P_T, forward rapidity)

Contamination of the SB with signal

P_T spectrum for **HLT_DoubleMuO**

|y| < 2.4

1.6 < |y| < 2.1

Big difference in P_T between two sidebands

Detail for 1.6 < |y| < 2.1 Statistics is low

P_T spectrum for HLT_Mu0_TkMu0_Jpsi 1.2 < |y| < 1.61.6 < |y| < 2.1

P_T spectrum is "similar" in ...but behaves differently this rapidity bin...

in the next one

P_T spectrum for HLT_MuO_TkMuO_OST_Jpsi(the trigger which had the biggest statistics in the data used)all |y| < 2.40.0 < |y| < 0.9

The higher mass SB has a peak at lower P_T than the low mass SB

For this trigger, the mid rapidity distribution shows a strange pattern due to kinematics cuts

P_T spectrum for HLT_MuO_TkMuO_OST_Jpsi_Tight_v1 (this trigger is a close parent of the former)

all |y| < 2.4

0.0 < |y| < 0.9

The left (low inv. mass) sideband seems to be harder in P_T than the right one

Also for this trigger the mid rapidity distribution shows a zig-zag pattern (the triggers are parents)

Cos θ and ϕ in different frames

- The following are 2D plots of the Cosθ and φ of the positive muon in the dimouns considered, for different reference frames.
- In the plots a cinematic dependence of the distribution in the two variables can be seen as we cycle trough different rapidity and P_T bins.
- Last but not least, there may be an effect due to "cowboy" dimuons inefficency.
- I will show data for the trigger path for which we have the highest statistics: *HLT_Mu0_TkMu0_Jpsi*

CS and HX frames HLT_Mu0_TkMu0_Jpsi $1.6 < |y| < 2.1 2.0 < P_T < 3.0$

Differences between HLT_Mu0_TkMu0_OST_Jpsi and HLT_Mu0_TkMu0_OST_Jpsi_Tight_v1

The former has been configured to reject all the dimouns which are "cowboys".

This rejection can be seen in these pictures, indeed there are no events in the lower part.

Purpose of the previous graphs

- Get an estimate of the «polarization» of the background muons under the peak from those in the two SB
- Take an intermediate value of the two to estimate the contribution of background to the polarization fit

Where to find more infos

- QTF Workspace > Polarization > Data Quality Checks > Distributions from Mass Sidebands
 https://espace.cern.ch/cms-quarkonia/onia-polarization/Data%20Quality%20Checks/Mass%20sidebands.aspx
- QTF Workspace > Polarization <u>https://espace.cern.ch/cms-quarkonia/onia-polarization/</u>
- About reference frames and the analisys <u>http://arxiv.org/abs/1006.2738</u>
- "Seagulls and Cowboys" <u>https://espace.cern.ch/cms-quarkonia/upsilon/Lists/slides/Attachments/31/correlations_gavin_2010_05_10.pdf</u> <u>https://espace.cern.ch/cms-quarkonia/onia-polarization/Lists/Meetings/DispForm.aspx?ID=39</u>