DMNet

Dark Matter Studies in Accelerator Physics 3rd DMNet international symposium 26-28 September 2023

Palazzo Moroni, Padua, Italy

Search for (pseudo-)scalar

and long-lived particles at Belle II

Laura Zani* on behalf of the Belle II collaboration 28.09.2023, Padova

*laura.zani@roma3.infn.it

Outline

- Long-lived pseudo-scalar particles
- Invisible boson in τ decays
- Axion-like Particles
- Dark higgsstrahlung
- Outlook

light mediator X:

- Pseudo-scalar portal \rightarrow **Axion Like Particles (ALPs)**
- Scalar portal \rightarrow **Dark higgs/Scalars**
- Vector portal \rightarrow Dark Photons, Z' bosons
- * Neutrino portal \rightarrow Sterile Neutrinos

• M.Laurenza's talk this afternoon!

Search for long-lived (pseudo)scalar in b \rightarrow s transitions

- First model-independent search for dark scalar particles S from B decays in rare $b \rightarrow s$ transition
- S could mix with SM Higgs with mixing angle θ_s (naturally long-lived for $\theta_s \ll 1$). For $M_S \ll M_B$ decay to dark matter kinematically forbidden by relic density constraint

- Look for S decays into SM final states in ${\bf 8}$ exclusive channels:
 - $-B^+ \rightarrow K^+ S$ and $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) S$, with $S \rightarrow ee/\mu \mu/\pi \pi/KK$
- B-meson kinematics to reject combinatorial $ee \rightarrow q\bar{q}$ background
- SM long-lived K_s^0 mass region vetoed \rightarrow excellent control sample in data to evaluate LLP performance (efficiencies, shapes)
- Further peaking backgrounds suppressed by tighter displacement selection

Search for LLP: signal extraction

- Bump hunt in the LLP mass with unbinned maximum likelihood fits to
 - using the reduced mass spectrum easier to model at threshold, separately for each channel and lifetime

 $M_{S \to x^+ x^-}^{\text{reduced}} = \sqrt{M_{S \to x^+ x^-}^2 - 4m_x^2}$

• Background determined directly in data (robust against un-modelled non-peaking background)

First model independent results for LLP

• No significant excess found in **189** fb⁻¹ \rightarrow first model-independent 95% CL upper limits on BF(B \rightarrow K*S)×BF(S \rightarrow x+x⁻) and BF(B \rightarrow K+S)×BF(S \rightarrow x+x⁻)

First limits on exclusive hadronic final states

 \rightarrow best sensitivity for direct search for $\ K^*e^+e^-$ final state

• Translate into model dependent limits on $m_s vs sin\theta_s$, with $c\tau_s = f(m_s, \theta_s)$

Combined scalar and ALP model fit [1]

[1]: Phys. Rev. D 101 095006 (2020)

Invisible boson in lepton-flavor violating τ decays

- τ decays to new LFV bosons decaying invisibly predicted in many models, possible ALPs candidates^[1]
- Previously at **ARGUS** ^[2] ($\sim 0.5 \text{ fb}^{-1}$) \rightarrow Belle II analysis relies on 120 x luminosity
- Search for the process $e^+e^- \rightarrow \tau_{_{sig}} (\rightarrow \ell \alpha) \tau_{_{tag}} (\rightarrow 3\pi \nu)$, with $\ell = e \text{ or } \ell = \mu$

- ⁻ three tracks on the tag side, one track on the signal side
- exploit the **shape differences**: 2-body decay of signal (peaking in some kinematics features) over 3-body decay of irreducible background from $\tau_{sM} \rightarrow \ell \nu \nu$

τ pseudo-rest frame

- Shape differences more prominent in the rest frame: approximate \mathbf{T}_{sig} pseudo-rest frame as $\mathsf{E}_{sig} \sim \sqrt{s/2}$ and $\hat{p}_{sig} \approx -\vec{p}_{\tau_{tae}} / |\vec{p}_{\tau_{tae}}|$
- Discriminating variable: normalized lepton energy \mathbf{x}_{ι}
- Bump hunt above broad spectrum from $\tau_{sM} \rightarrow \ell \nu \nu$

Invisible boson in LFV τ decays: results

- No significant excess found in 62.8 fb⁻¹
- Set 95% CL upper limits on BF ratios of $BF(\tau_{sig} \rightarrow \ell \alpha)$ normalized to $BF(\tau_{SM} \rightarrow \ell \nu \nu)$

Between 2-14 times more stringent than previous limits

Axion-like particle

- Axion-like particles (ALPs) are pseudo-scalars coupling to bosons
- Unlike QCD axions, no relation between the coupling and the mass
- Explored photon coupling g_{aYY} in *ALP-strahlung* processes (*photon fusion:* sensitivity under study)
- Exploit flavor changing neutral current and rare meson decays to investigate g_{aW} coupling ongoing studies for B→Ka

Search for a $\rightarrow \gamma\gamma$: analysis strategy

- Select fully neutral events consisting of three isolated photons with a total invariant mass consistent with center of mass energy → optimize to maximize ALP sensitivity
- Use calorimeter trigger (ECL efficiency almost 100%)

Search for a $\rightarrow \gamma\gamma$: signal extraction

• Signal yield extracted with binned maximum likelihood fits in sliding ranges (half mass resolutions step) to:

Search for a $\rightarrow \gamma\gamma$: results

• Set 95% CL upper limits on the signal cross section and $g_{a\gamma\gamma}$ coupling

Dark higgsstrahlung

• Dark photon (A') mass can be generated via a spontaneous symmetry breaking(*) mechanism, by adding a dark Higgs boson (h'): dark Higgsstrahlung process, $e^+e^- \rightarrow A' \rightarrow h A'$

- Belle II has unique capability to probe the **invisible h'** decay $(m_{h'} < m_{A'})$ with A' decaying to a **muon pair**
- Previously constrained only by KLOE(**)

- 4 parameters (no mixing with SM Higgs assumed): $m_{h'}$, $m_{A'}$, ϵ , α_D
- $M_{h'} > M_{A'}$: visible dark higgs, already searched by Belle, Babar
- $M_{h'} < M_{A'}$: invisible decays of h'

* Batell, Pospelov, Ritz, Phys. Rev. D 79, 115008 (2009) ** Babusci et al. (2015), Phys.Lett. B 747 pg. 365-372, 0370-2693

Dark higgsstrahlung: analysis strategy

- A' reconstructed as muon pairs, $M_{\mu\mu}~>1.65$ GeV for trigger requirements (two-track trigger)
- Background from radiative QED processes
 - \rightarrow same final state as for the invisible Z' search M.Laurenza's talk
- Scan dimuon and recoil mass **searching for peaks** in 9000 overlapping elliptical windows
- Apply Bayesian counting technique (challenging look-elsewhere effect)

\rightarrow observed yields in 8.34 fb⁻¹ data (2019)

Dark higgsstrahlung: results

World leading results for $1.65 < M_{A'} < 10.51 \ GeV/c^2 \rightarrow$ can be interpreted in a wider class of theoretical models (e.g., long-lived higgs mixing with $h_{\text{SM}})$

Inelastic dark matter with dark higgs

- Dark photon A' and dark higgs h'
- Dark matter states χ_1 and χ_2 with a small mass splitting:
 - χ_1 is stable (contributes to relic density)
 - χ_2 is long-lived at small values of kinetic-mixing coupling (ϵ)

Transverse view of the Belle II detector

JHEP 04 (2021), arXiv:2012.08595

Experimental signature: up to two displaced vertices + missing energy

 \rightarrow unconstrained by direct detection experiments, both inelastic and elastic scattering suppressed

Inelastic DM with dark higgs: analysis strategy

- Perform a bump hunt on the invariant mass of the dark higgs M_{h^\prime}

- Experimental challenges:
 - 1) dropping of reconstruction and trigger efficiencies with displacement of the vertices

- Model Parameters [JHEP 04 (2021), arXiv:2012.08595]
- 1) Mass of the Dark Photon, $(M_{A^{\prime}})$
- 2) Mass of the χ 1, (m_{χ 1})
- 3) Mass of the Dark Higgs $(M_{h'})$
- 4) Mixing Angle of Dark Photon and SM (ϵ)
- 5) Mixing Angle between dark higgs and SM Higgs (0)
- 6) Coupling of Dark Photon to DM (g_X)
- 7) Coupling of Dark Higgs to DM (f)
- New algorithms could recover reconstruction losses at reprocessing level
- Trigger losses are NOT recoverable, devise dedicated line, exploit calorimeter information

Inelastic DM with dark higgs: analysis strategy

- Perform a bump hunt on the invariant mass of the dark higgs M_{h^\prime}

- Experimental challenges:
 - 1) dropping of reconstruction and trigger efficiencies with displacement of the vertices
 - 2) efficiency depends on the beam background conditions

Model Parameters [JHEP 04 (2021), arXiv:2012.08595]

- 1) Mass of the Dark Photon, $(M_{A^{\prime}})$
- 2) Mass of the χ 1, (m_{χ 1})
- 3) Mass of the Dark Higgs $(M_{h'})$
- 4) Mixing Angle of Dark Photon and SM (ϵ)
- 5) Mixing Angle between dark higgs and SM Higgs (0)
- 6) Coupling of Dark Photon to DM (g_X)
- 7) Coupling of Dark Higgs to DM (f)

• Effects can be studied and modeled

Inelastic DM with dark higgs: sensitivity

[JHEP 04 (2021), arXiv:2012.08595]

- Belle II expected sensitivity for 100 fb⁻¹ (solid) and 50 ab⁻¹ (dashed)
- Preliminary studies show lower efficiencies \rightarrow one order of magnitude less sensitive
- Mandatory to implement **new trigger for displaced vertex detection**

L.Zani, Long-lived and dark scalar searches at Belle II - DMNet23

Outlook and conclusion

Belle II has **unique sensitivity** for light dark sectors searches, **complementary** to beam-dump experiments and high-energy colliders

Excellent performance with **displaced vertices** and **missing energy** allows **world's leading** results on several models to probe DM puzzle

- \rightarrow Search for a long-lived (pseudo-)scalar in b \rightarrow s transitions, arXiv:2306.02830
- \rightarrow Search for dark-Higgs particles Phys. Rev. Lett. 130, 071804 (2023)
- \rightarrow Search for an invisible boson in LFV tau decays, Phys. Rev. Lett. 130, 181803 (2023)
- \rightarrow Search for axion-like particles Phys. Rev. Lett. 125, 161806 (2020)
- \rightarrow Sensitivity at Belle II for Inelastic DM searches, JHEP 04 (2021), arXiv:2012.08595

Thanks for your attention!

L.Zani, Long-lived and dark scalar searches at Belle II - DMNet23

backup

Long-lived particle searches at Belle II

Transverse view of the Belle II detector

Inelastic dark matter

Dark photon A' and dark matter states $\chi 1$ and $\chi 2$ with a small mass splitting:

⁻ χ 1 is stable (relic)

- $^ \chi 2$ is long-lived at small values of kinetic-mixing coupling ($\varepsilon)$
- unconstrained by direct detection experiments, both inelastic and elastic scattering suppressed
- focus on $m_{A'}~>m_{\chi 1}+m_{\chi 2},$ such that $A'\!\to\chi 1~\chi 2$ is dominant decay

5 parameter model: $m_{A'}$ (fixed relative to $m_{\chi 1}$) $m_{\chi 1}$ (scan) mass difference $\Delta = m_{\chi 2} - m_{\chi 1}$ (categorical) dark coupling a_D (fixed to benchmarks) kinetic mixing parameter ϵ (limit)

- Mandatory to implement new trigger for displaced vertex detection
- Belle II could constrain the kinetic mixing $arepsilon < 10^{-4}$ with $\sim 100/{
 m fb}$

Journal of High Energy Physics volume 2020, Article number: 39 (2020)

Dark matter and light dark sectors

• Dark matter is one of the most compelling reasons for new physics

Dark Sector Candidates, Anomalies, and Search Techniques

B-factories at e⁺e⁻ collider can access the mass range favored by **light dark sectors**

Possible sub-GeV scale scenario: *light dark sector* weakly coupled to SM through a light *mediator X*

- Vector portal \rightarrow **Dark Photons, Z' bosons**
- Pseudo-scalar portal \rightarrow Axion Like Particles (ALPs)
- Scalar portal \rightarrow **Dark higgs/Scalars**
- Neutrino portal \rightarrow Sterile Neutrinos

Dark sectors searches at Belle II

- Many models proposed, possibly very small couplings:
 1) Be signature-based
 - 2) Profit from **clean environment** at lepton colliders + **hermetic detector: Belle II** at **SuperKEKB** asymmetric-energy e⁺e⁻ collider

 \rightarrow running mainly at $\surd s$ = 10.58 GeV: B & T factory ($\sigma_{_{bb}} \sim \sigma_{_{\tau\tau}} \sim$ 1 nb), known initial state

 \rightarrow efficient reconstruction of **neutrals** (π^{0} , η), recoiling system and missing energy

 \rightarrow specific **low-multiplicity triggers:** single track/muon/photon (previously not available at Belle)

GOAL: suppress high-cross section QED processes O(1-300 nb), without killing the signal < O(10 fb)

- Currently on first shutdown since July 2022
- Accumulated 424 fb⁻¹ (~ Babar, ~ half of Belle) and unique energy scan samples

SuperKEKB accelerator

 GOAL: 30 × KEKB peak luminosity, L = 6 · 10³⁵cm⁻²s⁻¹ (nano-beam scheme technique^{*})

ightarrow unprecedented luminosity, wolrd record **4.7x10**³⁴ cm⁻²s⁻¹

Belle II Luminosity

Total Integrated luminosity for good runs:

- Total integrated luminosity: 424 fb⁻¹
- Total integrated luminosity at the Y(4S) resonance: 363 fb⁻¹
- Total integrated luminosity below Y(4S) resonance: 42 fb⁻¹
- Total integrated luminosity above Y(4S) resonance: 19 fb⁻¹

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- installation of 2-layered pixel vertex detector
- improved data-quality monitoring and alarm system
- complete transition to new DAQ boards (PCIe40)
- replacement of aging components
- additional shielding and increased resilience against beam backgrounds

Currently working on pixel detector installation:

- > shipping to KEK in mid March
- > final test at KEK scheduled in April

 \rightarrow On track to resume data taking next winter with new pixel detector