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Why use Anomaly Detection?

• Many BSM searches perform dedicated searches that 
target specific signal models.

• Traditional searches optimise the event selection such that 
the separation between the signal and background is 
maximised.

• BUT… what if the signal model is not known? Then 
dedicated searches will miss them due to the limited phase 
spaces they consider. 

• To extend the search to wider phase spaces, model-
independent searches are conducted (do not depend on a 
specific signal model).

• Model-independent searches can be performed by 
e.g., searching for a localised excess (“bump”) in the 
data compared to simulated SM backgrounds, but 
such methods have limitations.

• Reduction in ability to supress backgrounds 
when using less stringent event selection 

• The significance of any signals is reduced by 
the number of analysis channels (look-
elsewhere effect) 

• Limited by the accuracy of the simulations
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Why use Anomaly Detection?

• To overcome these limitations, we use Anomaly 
Detection techniques which are: 

Ø model-independent

Ø Search for anything that looks different to the SM 
data by defining an Anomaly score 

Ø Use sophisticated analysis methods called 
Unsupervised Machine Learning (ML)

Ø Extend sensitivity of searches and therefore the 
discovery reach 

SM
Anomaly

Anomaly Score
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Unsupervised Machine Learning

Supervised ML: 

• This is the most common type of machine 
learning in which a model is trained to 
predict labels, e.g., Signal or Background. 

• Used to optimise the separation between 
specific signal models and SM backgrounds. 

• This requires knowledge of the signal model 
being searched for.

Unsupervised ML: 

• This method of ML is used for Anomaly 
Detection. 

• There are no labels in the training data and so 
knowledge of the signal being studied is not 
explicitly required. 

• They are trained on Monte Carlo simulated 
backgrounds only or SM dominated data.

• The models explicitly or implicitly learn to 
estimate the probability density.
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Unsupervised Machine Learning Models – 
AutoEncoder (AE)

• An example of a common Unsupervised ML 
model is the: AutoEncoder (AE).

• Designed to automate the process of 
optimising the representation of the input 
feature space. 

• Aims to learn a pair of functions: the 
encoder ( 𝜓 ) and decoder ( ∅ ) such that 
the error on the reconstructed data 
(∑! 𝑥! − ∅(𝜓(𝑥!)) ") is minimised. 
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Unsupervised Machine Learning Models – 
AutoEncoder (AE)
• If x’  is close to x (small loss) : events likely to 

be common – i.e., SM background events on 
which the AE is trained. 

SM
Anomaly
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Unsupervised Machine Learning Models – 
AutoEncoder (AE)
• If x’  is close to x (small loss) : events likely to 

be common – i.e., SM background events on 
which the AE is trained. 

• If x’  is different to x (large loss) : events 
should be less common – i.e., BSM signal 
events. 

SM
Anomaly
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Anomaly Detection at the 
ATLAS experiment
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Anomaly Detection at the ATLAS experiment  

• A recent analysis at the ATLAS experiment applied Anomaly Detection algorithms on data collected during Run 2 
(2015-2018) of the LHC (ATLAS, arXiv:2307.01612v1).

• The search was performed for any 2-body final states of the form jet+Y where jet was a light jet or b-jet and Y was 
allowed to be a lepton (electron or muon), photon or another light jet or b-jet.

• The Auto-Encoder was trained on 1% of Run 2 collision data (following preselection cuts).

• It is assumed that such a subset of the data would not contain a statistically significant number of BSM events and 
so can be assumed to represent SM backgrounds.

• The analysis was performed using high level kinematic information (in the form of the Rapidity Mass Matrix (RMM)) 
to train an Auto-Encoder.
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Rapidity Mass Matrix (RMM)  

• An image-like representation of the kinematic 
information for the data in an event.

• Components are normalized by the center of 
mass energy – allows for comparisons between 
Run2 (13 TeV) and Run3 (13.6 TeV) results.

• Encodes information that could be useful for NP 
searches.

S. V. Chekanov, arXiv:1805.11650
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Rapidity Mass Matrix (RMM)  
• Encapsulates many variables that are 

favored for BSM searches.

• For example: 
• Missing Transverse Energy (MET)

S. V. Chekanov, arXiv:1805.11650
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Rapidity Mass Matrix (RMM)  
• Encapsulates many variables that are 

favored for BSM searches

• For example: 
• Missing Transverse Energy (MET)
• Transverse energies 

S. V. Chekanov, arXiv:1805.11650
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Rapidity Mass Matrix (RMM)  
• Encapsulates many variables that are 

favored for BSM searches

• For example: 
• Missing Transverse Energy (MET)
• Transverse energies 
• Transverse masses

𝑴𝑻 𝒊𝒏 = (𝑬𝑻 + 𝑬𝑻𝒎𝒊𝒔𝒔)𝟐− 𝒑𝑻 + 𝑬𝑻𝒎𝒊𝒔𝒔
𝟐

Encodes information on masses of particles 
that decay to invisible particles, e.g., 𝐖 → 𝒍𝝂

S. V. Chekanov, arXiv:1805.11650
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Rapidity Mass Matrix (RMM)  
• Encapsulates many variables that are 

favored for BSM searches

• For example: 
• Missing Transverse Energy (MET)
• Transverse energies 
• Transverse masses
• 2-body Invariant masses 

Information on masses of 
resonances that decay to 2 particles, 

e.g., 𝐙 → 𝒍𝒍

S. V. Chekanov, arXiv:1805.11650
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Rapidity Mass Matrix (RMM)  
• Encapsulates many variables that are 

favored for BSM searches

• For example: 
• Missing Transverse Energy (MET)
• Transverse energies 
• Transverse masses
• 2-body Invariant masses
• Rapidity (shifted to [0, 1])

Indicates the region of the detector 
where particle was located

𝒉𝑳 𝒊𝒏 = 𝑪(𝒄𝒐𝒔𝒉 𝒚 − 𝟏); y = rapidity
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Rapidity Mass Matrix (RMM)  
• Encapsulates many variables that are 

favored for BSM searches

• For example: 
• Missing Transverse Energy (MET)
• Transverse energies 
• Transverse masses
• 2-body Invariant masses
• Rapidity (shifted to [0, 1])
• 2-particle rapidity differences  
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𝒉𝑳 𝒊𝒏, 𝒋𝒌 = 𝑪(𝒄𝒐𝒔𝒉 𝒚𝒊𝒏 − 𝒚𝒋𝒌 − 𝟏) ; y = rapidity
Indicates how collimated particles are 

(small ⇒collimated)

S. V. Chekanov, arXiv:1805.11650
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Anomaly Detection at the ATLAS experiment  
• Loss and anomaly region cuts defined by the trained AE 

for a variety of benchmark signals and the data.

• The predictions for the BSM models represent the 
expected number of events for masses of about 2 TeV 
from the Run 2 data. 

• The BSM models considered were:  

• Charged Higgs boson produced with a top quark, 
tbH+

• Kaluza-Klein Gauge-boson, WKK
• A Z’-boson, Z’
• Sequential-SM Z’-boson, SSM Z’
• A simplified DM model with an axial-vector Z’-boson 

mediator 
ATLAS, arXiv:2307.01612v1 
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• Following training of the AE on the RMM data, anomaly regions 
were defined based on the reconstruction loss of the AE. 

• 9 invariant masses were investigated in each anomaly region: 
𝑚// , 𝑚00 , 𝑚/0 , 𝑚/1 𝑚01 , 𝑚/2 𝑚02 , 𝑚/3 𝑚03 .

• Deviations from the expected SM backgrounds were searched for 
each of the nine regions. 

• No significant deviations from the SM were found.

• Largest deviation of 2.9 sigma seen for a mass of approximately 4.8 
TeV shown for the jet + muon mass in the figure, where it was 
observed.

  

Anomaly Detection at the ATLAS experiment  

3rd DMNet International symposium, J. Curran
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Anomaly Detection at the ATLAS experiment  
• 95% Confidence limits were determined on : 𝝈×𝜜×𝝐×𝜝 for the 

9 invariant masses in each Anomaly Region.

o 𝝈 = cross-section (probability of collision and interaction)
o 𝜜 = acceptance (indicates the number of particles that 

would be present the detector)
o 𝝐  = efficiency (indication of number of particles detected)
o 𝜝 = branching ratio (frequency of decays to the given final 

state).

• These limits are more stringent than the previous results on data 
with the same preselection.

• The AE acceptance is particularly good for high mass BSM 
models. 

• Now focusing on performing a similar analysis combining the 
Run-2 data with that collected so-far in Run 3 of the LHC. 
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Ongoing Investigations
• Investigations into a number of different AD algorithms 

are ongoing. 

• For example: 

• Deep SVDD 
• Autoregressive Flow 
(S. Caron et. Al., arXiv:2106.10164)

• An example of the Likelihood score for SM backgrounds 
vs. a BSM Gluino particle for an Autoregressive Flow 
model is shown in igure.

• The aim is to find an algorithm that is best able to 
identify a variety of BSM signal models over a large 
phase space . 

T. Aarrestad et. al., arXiv:2105.14027

https://arxiv.org/abs/2106.10164
https://arxiv.org/abs/2105.14027


• Anomaly Detection with the use of unsupervised machine learning allows for model-independent searches that 
can extend the sensitivity, and so the discovery-reach, of BSM searches.

• Anomaly Detection analyses have started to be performed at the ATLAS experiment at the LHC, CERN. 

• These analyses produce more stringent exclusion limits on the BSM models studied when compared to traditional 
selections to optimise the signal and background separation. 

• Many other AD algorithms and BSM models are being/still to be investigated.
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Summary - Why Anomaly Detection? 
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Rapidity Mass Matrix (RMM)  
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𝒉𝑳 𝒊𝒏 = 𝑪(𝒄𝒐𝒔𝒉 𝒚 − 𝟏);
 y = rapidity

Transverse Energy of 
leading particle

Transverse Mass of particle :

 𝑴𝑻 𝒊𝒏 = (𝑬𝑻 + 𝑬𝑻𝒎𝒊𝒔𝒔)𝟐− 𝒑𝑻 + 𝑬𝑻𝒎𝒊𝒔𝒔
𝟐

Missing 
Transverse 

Energy 

2-particle 
invariant mass

Relative transverse 
energy between same-

type particles
𝜹𝒆𝑻 𝒊𝒏 =

𝑬𝑻 𝒊𝒏4𝟏 − 𝑬𝑻(𝒊𝒏)
𝑬𝑻 𝒊𝒏4𝟏 + 𝑬𝑻(𝒊𝒏)

𝒉𝑳 𝒊𝒏, 𝒋𝒌 = 𝑪(𝒄𝒐𝒔𝒉 𝒚𝒊𝒏 − 𝒚𝒋𝒌 − 𝟏)

Encodes information on 
masses of particles that 
decay to invisible 
particles, e.g., 𝐖 → 𝒍𝝂

Info on masses of 
resonances that 
decay to 2 particles, 
e.g., 𝐙 → 𝒍𝒍

Indicates how collimated particles are (small -> collimated)
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Anomaly Detection at the ATLAS experiment  
• Loss and anomaly region cuts defined by the trained AE 

for a variety of benchmark signals and the data.

• The predictions for the BSM models represent the 
expected number of events for masses of about 2 TeV 
from the Run 2 data. 

• The BSM models considered were:  

• Charged Higgs boson produced with a top quark, 
tbH+

• Kaluza-Klein Gauge-boson, WKK
• A Z’-boson, Z’
• Sequential-SM Z’-boson, SSM Z’
• A simplified DM model with an axial-vector Z’-boson 

mediator 
ATLAS, arXiv:2307.01612v1 



Other Unsupervised 
Machine Learning Models
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Unsupervised Machine Learning Models – 
Deep SVDD
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• Deep SVDD model [refs] maps input data to a latent 
space defined by a multidimensional point of a 
defined target value, e.g., d=5, n= 1 -> (1, 1, 1, 1, 1). 

• The latent space is a multidimensional space that 
can be thought of as a compressed representation 
of the input feature space that encodes meaningful 
information on this input space.

• The anomaly score is then defined as the distance
to the defined multidimensional point.

• Data similar to that on which it was trained (here
the SM) should lie within the defined
multidimensional region, whilst anomalous (BSM)
data should fall outside this region.

S. Caron et. Al., arXiv:2106.10164

https://arxiv.org/abs/2106.10164


Unsupervised Machine Learning Models – 
Deep SVDD
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S. Caron et. Al., arXiv:2106.10164

https://arxiv.org/abs/2106.10164


Unsupervised Machine Learning Models – 
Autoregressive Flow
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• The Autoregressive Flow model [ref] attempts to
evaluate the likelihood of each event and convert
this to an anomaly score.

• These models start from a uniform prior
distribution and try to determine a probability
distribution for the known data (the SM) through
transformations of parameterised variables.

• SM events that the model is trained on should 
have a high likelihood, whilst BSM events should 
have a low likelihood. 

• Useful for detecting rare anomalies.S. Caron et. Al., arXiv:2106.10164

https://arxiv.org/abs/2106.10164


Unsupervised Machine Learning Models – 
Autoregressive Flow
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S. Caron et. Al., arXiv:2106.10164

https://arxiv.org/abs/2106.10164

