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Evidence on all scales!

Any successful theory must explain the origin of DM, 
i.e. provide a mechanism for its production with the 

abundance in agreement with observations

There are, of course, quite a few 
mechanisms known in the literature…
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freeze-out 
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chemical decoupling
timeT

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H

THERMAL RELIC DENSITY  
STANDARD SCENARIO

(chemical and kinetic)



5

time evolution of         in kinetic theory: 

freeze-out 

DM in full equilibrium

chemical decoupling
timeT

no
n-
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uil

ibr
ium

f�(p)

E (@t �H~p ·r~p) f� = C[f�]
the collision termLiouville operator in 

FRW background

kinetic decouplingΓscatt ∼ H
Γann < H

Γann ∼ H

Γann > H

THERMAL RELIC DENSITY  
STANDARD SCENARIO

(chemical and kinetic)
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

E (@t �H~p ·r~p) f� = C[f�]
Boltzmann equation for        :f�(p)
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*assumptions for using Boltzmann eq: 
classical limit, molecular chaos,...

…for derivation from thermal QFT 
see e.g., 1409.3049

dn�

dt
+ 3Hn� = �h���̄!ij�relieq

�
n�n�̄ � n

eq
� n

eq
�̄

�

Critical assumption: 
kinetic equilibrium at chemical decoupling

E (@t �H~p ·r~p) f� = C[f�])

Boltzmann equation for        :

integrate over p 
(i.e. take 0th moment)

f�(p)

)

fχ ∼ a(T ) f eq
χ

for a process of DM DM  SM SM↔



1 DM particle 2 DM particles

# changing processes  number density⇒

# conserving processes  energy density⇒

3 DM particles 4+ DM particles

…

For now assume a minimal theory of SM + one DM field
WHAT GOES INTO C IN GENERAL?
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Simple WIMP (e.g. scalar singlet model)
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,
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mS ∼ ( ∼ 55 − 63) GeV & > 3 TeV
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SUSY

χ = α1B̃+α2W̃+α3H̃1+α4H̃2

Neutralino 

SU(2):   singlet    triplet   doublet ⇒ has SM gauge interactions 
with fixed strength… but 

unknown mixing

χ
W

Wχ
+ …

χ
f

f̄χ
f̃

in particular:

mχ ∼ 𝒪(100 − few 1000) GeV

Simple WIMP (e.g. scalar singlet model)
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Semi-annihilation
D’Eramo, Thaler ’10

Typically occurs when new „flavour” or „baryon” structure in dark 
sector, but also present in scalar models, e.g. with  symmetryℤ3

DM

DM

DM

SM

These developments are especially relevant precisely in the regions that are still allowed

by the experimental data and where the improved precision of theoretical predictions is

required for robust claims of exclusion of the whole parameter space of the thermal Z3

singlet dark matter model.

The aim of this paper is to provide a timely update of the past results [53]. While the

unitarity constraints are often computed in the limit of infinite energy, we calculate them

at finite energy with the help of the latest version [78] of the SARAH package [80–83].

We use the one-loop e↵ective potential to calculate the bounds of absolute stability and

metastability of the EW minimum from the tunnelling rate with the help of the AnyBubble

package [84].1 These constraints, in particular the one from the unitarity, put an upper

bound on the singlet cubic self-coupling and therefore on the semi-annihilation cross section.

We take into account early kinetic decoupling around the Higgs resonance and for large

semi-annihilation, and use the micrOMEGAs code [86] to calculate relic density in the

larger part of the parameter space. The micrOMEGAs is also used to compute predictions

for direct and indirect detection signals. A large part of the parameter space is already

ruled out by XENON1T [47]. Thanks to the new unitarity constraints, we manage to

further restrict the model.

We introduce the model in section 2. Various theoretical and experimental constraints

are considered in section 3. Dark matter freeze-out, the impact of early kinetic decoupling

and semi-annihilation are studied in section 4. Section 5 discusses prospects of direct and

indirect detection of dark matter. We conclude in section 6. Details of the field-dependent

masses and counter-terms for the e↵ective potential are given in the appendix A.

2 The model

The most general renormalisable scalar potential of the Higgs doublet H and the complex

singlet S, invariant under the Z3 transformation H ! H, S ! e
i2⇡/3

S, is given by

V = µ
2

H |H|2 + �H |H|4 + µ
2

S |S|2 + �S |S|4 + �SH |S|2 |H|2 + µ3

2
(S3 + S

†3). (2.1)

This is the only possible potential with this field content and symmetry. Without loss of

generality, we can take µ3 real and non-negative.

The mass of the Higgs boson is Mh = 125.09 GeV [87] and the Higgs vacuum expec-

tation value (VEV) v = 246.22 GeV. We fix the parameters

µ
2

H = �
M

2

h

2
,

�H =
1

2

M
2

h

v2
,

µ
2

S = M
2

S � �SH

v
2

2
.

(2.2)

Dark matter mass MS , the Higgs portal �SH , the singlet cubic coupling µ3 and the singlet

quartic self-coupling �S are left as free parameters.

1
The first-order phase transition from thermal tunnelling into the EW minimum can produce a measur-

able gravitational wave signal, but only in a parameter space region with DM underdensity [85].

– 3 –

This interaction does not directly give a direct detection signal 
and leads to self-heating of DM

Kamada et al. ’18

Cai, Spray ’18 

implications for
core 

formation
ID

Chu, Garcia-Cely ’18 
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Cannibal DM
Calrson, Machacek, Hall ’92

DM

DM

DM

DM

DM

…

Idea: completely secluded dark sector, no non-gravitational interactions)
Freeze-out still possible and natural for mDM ∼ 𝒪(10 − 100) MeV

Hochberg et al. ’14; … 

This process also heats up DM, making original proposal incompatible with structure formation…
but revived after including additional (very weak) interactions with SM as „the SIMP miracle” 
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Dark freeze-out

If in the dark sector a light state with  is present  a completely secluded  freeze-out is possibleμ = 0 ⇒ 2 ↔ 2

Differences:
- dark sector can have different temperature 
- Hubble rate & d.o.f. need to be modified
- no direct connections to indirect nor direct detection

T′ 

see e.g. Bringmann et al. ’21



EXAMPLES: 
NON-STANDARD DM+MEDIATOR MODELS

10

Dark freeze-out

If in the dark sector a light state with  is present  a completely secluded  freeze-out is possibleμ = 0 ⇒ 2 ↔ 2

Differences:
- dark sector can have different temperature 
- Hubble rate & d.o.f. need to be modified
- no direct connections to indirect nor direct detection

T′ 

see e.g. Bringmann et al. ’21

Inverse decays - INDY DM
Frumkin et al. ’21

Thermal Dark Matter from Freezeout of Inverse Decays

Ronny Frumkin1,⇤ Yonit Hochberg1,† Eric Kuflik1,‡ and Hitoshi Murayama2,3,4,5§
1Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

2Ernest Orlando Lawrence Berkeley National Laboratory,
University of California, Berkeley, CA 94720, USA

3Department of Physics, University of California, Berkeley, CA 94720, USA
4Kavli Institute for the Physics and Mathematics of the Universe (WPI),

University of Tokyo, Kashiwa 277-8583, Japan and
5The Institute for AI and Beyond, The University of Tokyo, Tokyo 113-8655, Japan

We propose a new thermal dark matter candidate whose abundance is determined by the freezeout
of inverse decays. The relic abundance depends parametrically only on a decay width, while matching
the observed value requires that the coupling determining the width—and the width itself—should
be exponentially small. The dark matter is therefore very weakly coupled to the Standard Model,
evading conventional searches. This INverse DecaY (‘INDY’) dark matter can be discovered by
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The identity of dark matter (DM) is one of the
most pressing open questions in modern day physics.
While the weakly interacting massive particle (WIMP)
paradigm has long guided the particle physics commu-
nity, the absence of experimental evidence for the WIMP
at colliders, direct-detection and indirect-detection ex-
periments stresses the importance of considering DM be-
yond the WIMP. Indeed, recent years have seen a surge
of new DM ideas (see e.g. Refs. [1–15]) which utilize
various processes in the early universe.

One such process is inverse decay, where a DM par-
ticle is produced through the inverse decay of a heavier
particle in the dark sector. Thus far, decays have been
considered in the literature in the context of freeze-in
DM [16], where a slow inverse decay of a bath particle
slowly freezes in the DM abundance; as a process main-
taining chemical equilibrium within the dark sector or
with the SM [7, 8, 13, 17–22]; and in other dark matter
frameworks [16–18, 23–26]. The e↵ects of inverse decays
on dark matter depletion have been considered as a con-
tributing reaction [27, 28], but never as the main process
for setting the dark matter abundance. In this work, and
in a companion paper [29], we study the freezeout of in-
verse decays as the mechanism to set the relic abundance
of DM.

This Letter is organized as follows. We begin by outlin-
ing the basic idea for freezeout of inverse decays and de-
rive an analytical understanding of the mechanism. We
then solve the Boltzmann equations of the system and
obtain the DM parameter space. Finally we present a
model that realizes the mechanism.

BASIC IDEA

Here we show that the freezeout of inverse decays can
be responsible for the relic abundance of DM. Consider

a dark matter particle � and an unstable dark sector
particle  that has a decay that contains some number
of � particles in the final state. For simplicity we will
consider a simple decay and inverse decay

  ! �+ � (1)

motivated by a Z2 symmetry in the dark sector. (Other
inverse decay topologies can be considered as well.) Here
� can be a dark sector or visible particle that is assumed
to be in equilibrium with the bath. (Later we will take a
concrete model in which � is a dark photon that kineti-
cally mixes with hypercharge.)
The Boltzmann equation for the abundance of �, as-

suming that � is in equilibrium, is:
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, (2)

with � the decay rate of  ! ��. We assume that
the DM is cold, namely that it freezes out when non-
relativistic; our numerics presented later on confirm this.
We can thus ignore the thermally averaged time dilation
that would normally appear in the collision term.
Approximate analytic solutions to the Boltzmann

equations can be obtained in the instantaneous freezeout
approximation, but will not always su�ce. The inverse
decay rate is falling o↵ exponentially as e

�(m �m�)/T

(rather than e
�m�/T for the well-studied WIMP), which

is not necessarily fast enough to assume that instanta-
neous freezeout occurs. Further consideration must also
be taken into account because the decays and inverse
decays may not actually be in equilibrium before they
completely decouple.
We begin by calculating the relic abundance when de-

cays are in equilibrium. This will give us an approxi-
mate range of parameter space—couplings and masses—
necessary to reproduce the observed abundance. We first
assume that  is always in chemical equilibrium with
the Standard Model (SM) bath. This can be achieved
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rive an analytical understanding of the mechanism. We
then solve the Boltzmann equations of the system and
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model that realizes the mechanism.
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Here we show that the freezeout of inverse decays can
be responsible for the relic abundance of DM. Consider
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particle  that has a decay that contains some number
of � particles in the final state. For simplicity we will
consider a simple decay and inverse decay
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motivated by a Z2 symmetry in the dark sector. (Other
inverse decay topologies can be considered as well.) Here
� can be a dark sector or visible particle that is assumed
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concrete model in which � is a dark photon that kineti-
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suming that � is in equilibrium, is:
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with � the decay rate of  ! ��. We assume that
the DM is cold, namely that it freezes out when non-
relativistic; our numerics presented later on confirm this.
We can thus ignore the thermally averaged time dilation
that would normally appear in the collision term.
Approximate analytic solutions to the Boltzmann

equations can be obtained in the instantaneous freezeout
approximation, but will not always su�ce. The inverse
decay rate is falling o↵ exponentially as e

�(m �m�)/T

(rather than e
�m�/T for the well-studied WIMP), which

is not necessarily fast enough to assume that instanta-
neous freezeout occurs. Further consideration must also
be taken into account because the decays and inverse
decays may not actually be in equilibrium before they
completely decouple.
We begin by calculating the relic abundance when de-
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Figure 4. Expected upper limits at 95% C.L on the Wino annihilation cross section as a function of its mass for 500 h of CTA
observations towards the GC. The predicted NLL cross section is shown (solid gray line) and the thermal Wino DM mass is
marked (cyan solid line and bands). The only background considered here is the residual background. The full Wino spectrum
is included in the expected signal. Left panel: Mean expected upper limits at 2� (red solid line) for an Einasto profile are shown
together with the 1� (green band) and 2� (yellow band) containment bands. Mean expected upper limits at 5� (red dashed
line) are also shown. The H.E.S.S.-like 2� sensitivity extracted from Ref. [68] is shown as a blue solid line. Right panel: The
expected limits are shown for cored DM profiles of size from 300 pc to 5 kpc.

lower 1� expected limit. Accordingly, in Figs. 4 and 6,
we only show the lower 1� expected limit, as the actual
limit, by construction, cannot go below this. We also
compute the 5� mean expected upper limit on h�viline,
which corresponds to q ⇡ 23.7.

The above prescription outlines how to determine the
limit for a given dataset m�,ijk, which could be either ob-
tained from real observations or via Monte Carlo simu-
lations.

Before CTA’s first light, we can estimate the expected
sensitivity by generating a large number of Monte Carlo
datasets and determining the mean expected limit and
associated containment bands. An alternative to this ap-
proach, which we will use in this work, is to instead deter-
mine all of these quantities using the Asimov formalism of
Ref. [116]. Under the Asimov approach, instead of taking
many realizations of the model, calculating the limit each
time, and then determining the mean of those values, we
instead take the mean dataset, which is exactly given
by the model. The model, when used as the dataset, is
then referred to as the Asimov dataset. Of course, as
the model is not strictly an integer, this requires analyt-
ically continuing the Poisson distribution to non-integer
values, which can be accomplished using the � function.
The Asimov approach can also be used to determine the
confidence intervals. In detail, to determine the N -sigma
containment band, instead of evaluating q = 2.71, we

calculate

q =
�
��1(0.95)±N

�2
. (19)

Here � is the cumulative distribution function for the
standard normal, which has µ = 0 and � = 1. Accord-
ingly ��1(0.95) ⇡ 1.64, so that the above result contains
the mean limit as a special case at N = 0.

In the idealized scenario we consider here of data
drawn from a background model known exactly, the
above procedure for calculating limits is su�cient. We
emphasize, however, that when considering the actual
CTA data, our models will be inevitably imperfect. One
consequence of this is that the coverage of our limits, and
the validity of discovery thresholds can deviate from the
simple asymptotic estimates used above, and may need
to be validated and potentially tuned using datasets that
contain an injected signal.

V. RESULTS AND PROSPECTS

A. Sensitivity to Wino DM and impact of the
endpoint contribution

The CTA sensitivity forecast for Wino DM, expressed
as the mean expected upper limit at 95% C.L. on h�viline
as a function of the Wino mass, is shown in the left panel
of Fig. 4, together with the expected containment bands

resonance moves 
to the right

w.r.t. pure wino
actual 

cross section

correct RD can be achieved: 
when varying sfermion masses

similar study, pure Wino case: Ibe et al. ’15  

Beneke, …AH, … et al., ’16
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DM bound statefree DM states

BOUND STATE FORMATION

X1

X2

¨ ¨ ¨ ¨ ¨ ¨ B

g

C⌫

Figure 1a: The amplitude for the radiative capture consists of the (non-perturbative) initial and final
state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.

rC⌫saii1,jj1 “
i

j

⌘1K ` q

⌘2K ´ q

a, ⌫
b, ⇢

c, µ

Pg

⌘1P ` p

⌘2P ´ p

i1

j1

` `

Figure 1b: The leading order diagrams contributing to the radiative capture into bound states via gluon
emission. The external-momentum, colour-index and space-time-index assignments are the same in all
three diagrams.

that appear in eq. (2.16), q0 and p0 are determined by the poles of C⌫ , upon the integration denoted
in eq. (2.17). The total 4-momenta of the scattering state, the bound state and the radiated gluon,
K, P and Pg respectively, essentially contain all the (discrete and continuous) quantum numbers that
fully specify the system. In the non-relativistic regime, they can be expressed as

K “
ˆ
M ` K2

2M
` Ek, K

˙
, (2.19a)

P “
ˆ
M ` P2

2M
` En`, P

˙
, (2.19b)

Pg “ p!, Pgq , (2.19c)

where Ek “ k2{p2µq “ µv2rel{2 is the kinetic energy of the scattering state in the CM frame, with
vrel being the relative velocity of the interacting particles, and En` † 0 is the binding energy of the
bound state. Note that Mn` ” M ` En` is the mass of the bound state. For a Coulomb potential,
En` “ ´2{p2n2µq, with  ” µ↵B

s (cf. appendix A). Energy-momentum conservation, K “ P ` Pg,
implies

! “ |Pg| » Ek ´ En` . (2.20)

The leading order contributions to rC⌫saii1,jj1 are shown in fig. 1b. We compute them next using
the Feynman rules from [55].

Emission from the mediator

ipC⌫
medqaii1,jj1 “ S1p⌘1P ` pq

“
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
‰
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq r´igs pT c
2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµsS2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫
`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)
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*the effect was first studied in simplified models with light mediators, then gradually 
extended to non-Abelian interactions, double emissions, co-annihilations, etc.

see papers by K. Petraki et al. ’14-19

As noticed before Sommerfeld effect has 
resonances when Bohr radius ~ potential range, 

i.e. when close to a bound state threshold

Can DM form 
actual bound states from such 

long range interactions?

Yes, it can!

Q:  How to describe such bound states and their formation?

**vide also ”WIMPonium”
March-Russel, West ’10
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EXAMPLE:
IMPACT ON THE UNITARITY BOUND

Conservation of probability
(for any partial wave)

3

with BR(Bi ! SM) =
�ann

�ann + �break

=

"
1 +

h�Ivrelig2� M3

DM
e�z EBI

/MDM

2gI (4⇡z)3/2 �ann

#�1

, (3)

where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,

YDM(1) =
1

�

 Z 1

zf

h�e↵vreli(z)

z2
dz +

h�e↵vreli(zf )

z2f

!�1

,

(4)

with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln

✓
2g�h�e↵vreli(zf )�

(2⇡zf )3/2

◆
. (5)

For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10) re-
duction. This is not surprising, since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state for-
mation. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

)

Griest and Kamionkowski ’89

) upper limit on DM mass if thermally produced: MDM < 340 TeV

With the bound state annihilation taken into account:

(see also von Harling, Petraki ’14, Cirelli et al. ’16, …)

(for a Majorana 
fermion and )Ωh2 = 1

” ”
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where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,

YDM(1) =
1
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dz +
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with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln

✓
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(2⇡zf )3/2

◆
. (5)

For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10)
reduction. This is not surprising since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state forma-
tion [49]. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

but some of the bound states dissociate 
before they are able to annihilate! )
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e�z EBI

/MDM

2gI (4⇡z)3/2 �ann

#�1

, (3)

where the rate for breaking of bound states follows from
the Milne relation.

This equation can be easily integrated numerically, but
has an analytic asymptotic solution, which agrees very
well with the numerical treatment,

YDM(1) =
1
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 Z 1

zf

h�e↵vreli(z)

z2
dz +
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z2f
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,

(4)

with the inverse temperature at freeze-out MDM/Tf = zf
given by the transcendental equation

zf = ln
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2g�h�e↵vreli(zf )�

(2⇡zf )3/2

◆
. (5)

For multi-TeV DM, zf ⇡ 25 is typical.
In Fig. 1, we demonstrate the e↵ects of the Sommer-

feld enhancement and bound-state formation on freeze-
out. Including the Sommerfeld e↵ect leads to additional
attraction among WIMPs and enhances the annihilation
rate, which in turn reduces the relic abundance by O(10).
The consideration of bound states is an additional e↵ec-
tive annihilation channel and leads to a further O(10)
reduction. This is not surprising since it is known that in
the SM non-relativistic e+ e� annihilation is dominated
by positronium formation and its successive annihilation.
Additionally, the importance of the decay width of the
considered bound state is highlighted. The typical anni-
hilation width scales as ↵5MDM, where ↵ is the coupling
strength of the interaction considered, and thus a typi-
cal width in a perturbative model would be of the order
10�5MDM or smaller. The observation we want to stress
is, that while a bound state can be a reaction product
of dark-matter interactions, its e↵ect on the relic density
strongly depends on its binding energy and decay width
to SM particles.

B. E↵ects on the Unitarity Bound

As discussed in the classic paper of Griest and
Kamionkowski [27], conservation of probability limits the
reaction cross section of DM annihilating to any final
state for each partial wave by

(�vrel)
J
total

< (�v)J
max

=
4⇡(2 J + 1)

M2

DM
vrel

. (6)

Note the scaling of the bound with v�1

rel
, which is not

expected from contact type interactions, but is generic
in the presence of long range forces. To understand
the physical implications of the above inequality, we

FIG. 1: E↵ects on freeze-out due to the Sommerfeld ef-
fect alone and the additional e↵ects of bound-state forma-
tion. The inset shows the qualitative behavior at the time
of deviation from the thermal DM abundance. Note in
particular, that the DM depletion due to bound-state for-
mation (green lines) sets in at later times than the Som-
merfeld enhanced freeze-out. In particular in the case in-
dicated by the dot-dashed green line, where the smaller
bound-state annihilation rate of �ann ⇡ 10�7MDM leads
to a belated annihilation. This is a direct consequence of

the branching ratio introduced in Eq. (3).

first discuss the cross sections that are relevant for the
physical system. In the following, (�vrel) denotes non-
averaged cross sections and h�vi denotes thermally av-
eraged cross sections. The total (inelastic) reaction
cross section is (�vrel)total =

P
J(�vrel)

J
total

. The to-
tal reaction cross section is composed of an annihila-
tion part and the bound-state formation cross section
(�vrel)total = (�vrel)ann +

P
I(�Ivrel)BSF. The rele-

vant quantity for the freeze-out, as we have shown, is
(�vrel)e↵ = (�vrel)ann +

P
I(�Ivrel)BSFBR(BI ! SM) 

(�vrel)total. The equality saturates only at zero temper-
ature, otherwise the inequality holds, due to the fraction
of bound states broken by ambient plasma quanta.
In Ref. [27], the total reaction cross section is approxi-

mated as (�vrel)total ⇡ (�vrel)ann and taken for the freeze-
out computation, not considering the bound-state e↵ects.
The scaling, with the inverse velocity of this cross sec-
tion, is however only possible in the presence of light
mediators, which unavoidably lead to bound state forma-
tion [49]. Thus, in any perturbative physical system, sat-
urating the unitarity bound on (�vrel)Jtotal, the inequality
(�vrel)e↵  (�vrel)total leads to a lower maximally attain-
able DM mass than expected from considering only an-
nihilation. This is one of the main findings of our paper
and will be made quantitative in the coming sections.
The second case considered in Ref. [27] is the anni-

overestimates the cross 
section in the Boltzmann eq.

)

maximal attainable mass for 
thermal DM is lower)

Smirnov, Beacom ’19

MDM < 144 TeV
(for a Majorana fermion 

coupled vis SU(2)L)

MDM < 200 TeV(updated)
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FREEZE-OUT VS. DECOUPLING

DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

where t = q̃2 = (k − k′)2, and after summing over all the spins we get

∑

spins

∣

∣Mscatt
∣

∣

2
=

e4

t2
× tr

(

(#k′ +me)γ
ν(#k +me)γ

λ
)

× tr
(

(#p′ +Mµ)γν(#p +Mµ)γλ
)

. (6)

The right hand sides of eqs. (4) and (6) are exactly the same analytic functions of the

momenta, provided we identify the momenta in the two processes according to the table (2),

k ↔ +p1 , k′ ↔ −p2 , p ↔ −p′2 , p′ ↔ +p′1 . (7)

Indeed, under this mapping,

tscatt = (k − k′)2 ↔ spair = (p1 + p2)
2,

tr
(

(#k′ +me)γ
ν(#k +me)γ

λ
)scatt

↔ − tr
(

(#p2 −me)γ
ν(#p1 +me)γ

λ
)pair

,

tr
(

(#p′ +Mµ)γν(#p+Mµ)γλ
)scatt

↔ − tr
(

(#p′1 +Mµ)γν(#p
′

2 −Mµ)γλ
)pair

,

(8)

and hence
∑

spins

∣

∣Mscatt
∣

∣

2
↔

∑

spins

∣

∣Mpair
∣

∣

2
. (9)

To be precise, the correspondence in eq. (9) involves analytic continuation rather than

outright equality because positive particle energies in scattering map onto negative energies

in pair production and vice verse. Thus,

∑

spins

∣

∣Mpair
∣

∣

2
= F (p1, p2, p

′

1, p
′

2) and
∑

spins

∣

∣Mscatt
∣

∣

2
= F (k,−k′, p′,−p) (10)

for the same analytic function F of the momenta, but for the pair production this function

is evaluated for p02 > 0 and p′02 > 0, while for the scattering we use it for p02 = −k′0 < 0 and

p′02 = −p0 < 0.

Relations such as (9) between processes described by similar Feynman diagrams (but

with different identifications of the external legs as incoming or outgoing) are called crossing

symmetries. And such crossing symmetries apply to amplitudes themselves and not just
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crossing sym.

~

dark matter frozen-out but typically 
still kinetically coupled to the plasma

Torsten Bringmann, University of Hamburg ‒Thermal decoupling of WIMPs

Freeze-out = decoupling !

7

WIMP interactions with heat bath of SM particles:
� SM

SM SM SM�

� �

(annihilation) (scattering)

n�Boltzmann suppression of 
scattering processes much more frequent
continue even after chemical decoupling (“freeze-out”) at Tcd � m�/25

Kinetic decoupling much later:
Random walk in 
momentum space
� Ncoll � m�/T

Schmid, Schwarz, & Widerin,  PRD ’99; Green, Hofmann & Schwarz, JCAP ’05, ...

�r(Tkd) � Ncoll/�el ⇥ H�1(Tkd)

Boltzmann suppression of DM vs. SM scatterings typically more frequent)

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

f� ⇠ a(µ)f eq
�

Two consequences:

1. During freeze-out (chemical decoupling) typically:
2. If kinetic decoupling much, much later: possible impact on the matter power spectrum

i.e. kinetic decoupling can have observable consequences and affect e.g. missing satellites problem
see e.g., Bringmann, Ihle, Karsten, Walia ’16 18



EARLY KINETIC DECOUPLING?
A necessary and sufficient condition: scatterings weaker than annihilation

DM

DM

SM

SM

DM

SM

DM

SM
>>A)

B)    Boltzmann suppression of SM as strong as for DM

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

�ann �el �self H & . ⇠ (17)

�el & H & �ann (18)

H & �ann & �el (19)

H & �el & �ann (20)

�el � H ⇠ �ann (21)

H ⇠ �ann & �el (22)

2

i.e. rates around freeze-out:

C)    Scatterings and annihilation have different structure

e.g., below threshold annihilation (forbidden-like DM)

Possibilities:

e.g., semi-annihilation, 3 to 2 models,…

e.g., resonant annihilation

19
D)    Multi-component dark sectors

e.g., additional sources of DM from late decays, …
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HOW TO GO BEYOND KINETIC EQUILIBRIUM?

E (@t �H~p ·r~p) f� = C[f�]
contains both scatterings and 

annihilations

both about chemical (”normalization”) and 
kinetic (”shape”) equilibrium/decoupling

All information is in the full BE:

Two possible approaches:

solve numerically 
for full  f�(p)

have insight on the distribution
no constraining assumptions

numerically challenging
often an overkill

consider system of equations 
for moments of f�(p)

partially analytic/much easier numerically
manifestly captures all of the relevant physics

finite range of validity
no insight on the distribution

0-th moment:
2-nd moment:

dn�

dt
+ 3Hn� = C

Vector bosons:

vrel�VV =
�
2
ss

8⇡
�V vV |Dh(s)|2(1� 4x+ 12x

2
) , (13)

where x ⌘ M
2
V /s, vV =

p
1� 4x and �W = 1, �Z =

1
2 and |Dh(s)|2 is defined in eq. (9).

Fermion final states:

vrel�f f̄ =
�
2
sm

2
f

4⇡
Xfv

3
f |Dh(s)|2 , (14)

where vf =
p

1� 4m
2
f /s and Xf = 1 for leptons, while for quarks it incorporates a colour factor of 3 and an

important one-loop QCD correction [?]:

Xq = 3

"
1 +

 
3

2
log

m
2
q

s
+

9

4

!
4↵s

3⇡

#
, (15)

where ↵s is the strong coupling for which we take the value ↵s = 0.1172.

0.1 Scattering cross-section

Below we give the formula for the scattering amplitude needed for the KD computation (this is our computation,

not based on [?]). In Eq.(3) we use:

Mel(t) =

X

f={q0s,e,µ,⌧}

m
2
f�

2
s

2

4m
2
f � t

(t�m
2
h)

2
(16)

A) We assume all quarks afre free and present in the plasma down to temperatures of T = 154 MeV (largest

scattering scenario)

B) We assume only light quarks (u, d, s) are present in the plasma and moreover even these dissapear around

4Tc ⇠ 600 MeV (smallest scattering scenario)

y ⌘ m�T�

s2/3
(17)

�ann �el �self H & . ⇠ (18)

�el & H & �ann (19)

H & �ann & �el (20)

H & �el & �ann (21)

�el � H ⇠ �ann (22)

H ⇠ �ann & �el (23)

T� ⌘ g�

3m�n�

Z
d
3
p

(2⇡)3
p
2
f�(p) (24)

2

…fB
E cBE



https://drake.hepforge.org

Prediction for the DM 
phase space distribution

Late kinetic decoupling 
and impact on cosmology

see e.g., 1202.5456

Interplay between chemical and 
kinetic decoupling

Applications:

DM relic density for 
any (user defined) model

*

*

at the moment for a single DM species and w/o 
co-annihlations… but stay tuned for extensions! 21

…

(only) prerequisite:  
 Wolfram Language (or Mathematica)

NEW TOOL! 
GOING BEYOND THE STANDARD APPROACH

https://drake.hepforge.org


EXAMPLE A:
SCALAR SINGLET DM
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SM
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DM
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EXAMPLE A 
SCALAR SINGLET DM

23

h�vreli2 ⌘
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vrel��̄�!X̄Xf(E)f(Ẽ) (1)

where the equilibrium number density in the nonrelativistic regime is n
eq
� = m

3
�g�K2(x)/(2⇡

2
x).

With these one can show that as long as the Assumption is made or Yeq ⌧ Y , the second moment of the

Boltzmann equation can be written as:
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with

c(T ) =
1

12(2⇡)3m4
�T

X

X

Z
dk k

5
!
�1

g
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1⌥ g
±�
Z 0

�4k2

(�t)
1

8k4
|Mel|2 . (3)

To summarize we get coupled equations:

Y
0

Y
= �

1� x
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The Lagrangian contains kinetic terms and a cross-coupling to the standard model Higgs field,

LS =
1

2
@µS@

µ
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2
µ
2
SS

2 � 1

2
�sS

2|H|2 . (6)

After electroweak symmetry breaking, the S boson mass receives contributions from both terms, giving

ms =

r
µ
2
S +

1

2
�sv

2
0 , (7)

where v0 = 246.2 GeV. We adopt Higgs mass and width to be mh = 125.09GeV and �vis = 4.21MeV.

�vrel =
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where
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(s�m
2
h)

2 +m
2
h�

2
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• For ms < mh/2, the width in the propagator Dh(s) must be increased by the invisible contribution �inv

due to h ! SS:

�inv =
�
2
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2
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, (10)

• For ms > mh, eq. (8) must be supplemented by the extra contribution from SS ! hh (corrected sign

w.r.t. [?], as pointed out by P. Gondolo):
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To the SM Lagrangian add one singlet scalar field S with interactions with the Higgs:

Annihilation 
processes:

El. scattering 
processes:

resonant non-resonant

S
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S S

q,l q,l

h

G
A

M
BIT

 collaboration
1705.07931

9

★

➤

➤

GAMBIT 1.0.0

G AM B I T

⌦h 2
=
0.119

�3

�2

�1

0

lo
g 1

0
�
h
S

50 55 60 65
mS (GeV)

Scalar singlet
Prof. likelihood

★

➤

➤

➤

➤

GAMBIT 1.0.0

G AM B I T

⌦h
2 = 0.1

19

�3

�2

�1

0

lo
g 1

0
�
h
S

P
rofi

le
likelih

ood
ratio

⇤
=

L
/L

m
a
x

2.0 2.5 3.0 3.5
log10(mS/GeV)

0.2

0.4

0.6

0.8

1.0

Scalar singlet
Prof. likelihood

Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of the DM are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary of
this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the nuisances,
as a guide. Left: late-time thermal average of the cross-section times relative velocity; Centre: spin-independent WIMP-nucleon
cross-section; Right: relic density.

singlet parameters in Fig. 1, and in terms of some key
observables in Figs. 2 and 3. We also show the one-
dimensional profile likelihoods for all parameters in red
in Fig. 4.

The viable regions of the parameter space agree well
with those identified in the most recent comprehensive
studies [23, 31]. Two high-mass, high-coupling solutions
exist, one strongly threatened from below by direct de-
tection, the other mostly constrained from below by the
relic density. The leading ⁄

2
hS

-dependence of ‡SI and
‡v approximately cancel when direct detection signals
are rescaled by the predicted relic density, suggesting

that the impacts of direct detection should be to simply
exclude models below a given mass. However, the relic
density does not scale exactly as ⁄

≠2
hS

, owing to its de-
pendence on the freeze-out temperature, resulting in an
extension of the sensitivity of direct detection to larger
masses than might be naïvely expected, for su�ciently
large values of ⁄hS.3 This is the reason for the division
of the large-mass solution into two sub-regions; at large
coupling values, the logarithmic dependence of the relic
density on ⁄hS enables LUX and PandaX to extend
their reach up to singlet masses of a few hundred GeV.
3This point is discussed in further detail in Sect. 5 of Ref. [23].
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RESULTS
EFFECT ON THE Ωh2

effect on relic density: 
up to O(~10)

[… Freeze-out at few GeV        what is the abundance of heavy quarks in QCD plasma?

 two scenarios: QCD = A - all quarks are free and present in the plasma down to Tc =154 MeV
QCD = B - only light quarks contribute to scattering and only down to 4Tc …]

m
D

M
 =

 6
2.

5 
G

eV
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GENERIC RESONANT ANNIHILATION
EXAMPLE EFFECT OF EARLY KD ON RELIC DENSITY

can reach O(10%) 
even for Z-like 
resonance

very large effect for 
Higgs-like resonance
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III: 
MULTI-COMPONENT DARK MATTER



WHAT IF A NON-MINIMAL SCENARIO?
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DM

DM

SM

SM

annihilation (elastic) scattering

DM

SM

DM

SM

In a minimal WIMP case only two types of processes are relevant:

drives number density evolution
(keeping the distribution to be in local thermal eq.)

scatterings typically more frequent

Schmid, Schwarz, Widern ’99; Green, Hofmann, Schwarz ’05

crossing sym.
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(co-)annihilation
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conversion elastic scattering

inelastic scattering self scattering

decay
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A,B A,B

A,B
B,A

SM

A

B

SM

SM

A

A

A
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WHAT IF A NON-MINIMAL SCENARIO?

3-2 cannibal

semi-annihilation/semi-conversion

A,B — two different dark sector states (at least one needs to be stable)

+ processes involving even more particles, e.g. …2 ↔ 4

Note: some of these processes affect not only # density, but also 
strongly modify the energy distribution of DM particles!



EXAMPLE D:
WHEN ADDITIONAL INFLUX OF DM ARRIVES

29

D)    Multi-component dark sectors

Sudden injection of more DM particles distorts 
(e.g. from a decay or annihilation of other states)

fχ(p)

- this can modify the annihilation rate (if still active)

- how does the thermalization due to elastic scatterings happen?
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(if increased annihilation)
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DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf
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DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

nBE (i.e
. en

force
d 

kin
etic

 eq
uilib

riu
m)

fBE (no self-
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e.g.    with χχ̄ → f f̄ mχ ≲ mf
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fBE (no self-
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fBE (with self-
scatterings)

no enhanced 
annihilation, 
more DM in 

the end

some injected 
particles will 

annihilate together 
with themselves and 

cold component

energy redistribution 
will allow more DM 
particles to reach 

energies over 
annihilation threshold 
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DM produced via:
2nd component from a decay ϕ → χ̄χ

1st component from thermal freeze-out
DM annihilation has a threshold1) 2)

e.g.    with χχ̄ → f f̄ mχ ≲ mf

number densityY ∼ temperaturey ∼ momentum distributionp2 f (p) ∼
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3. Kinetic equilibrium is a necessary (often implicit) assumption for 
standard relic density calculations in all the numerical tools…

(we also introduced                            a new tool to extend the current 
capabilities to the regimes beyond kinetic equilibrium)

…while it is not always warranted!

2. In recent years a significant progress in refining the relic density 
calculations (not yet fully implemented in public codes!)

SUMMARY
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1. Non-standard freeze-out encompasses a plethora of models, 
ideas and possibilities, that have a similar theoretical standing to the 
standard WIMP-like freeze-out, while possibly quite different 
phenomenology


