Sub-GeV dark matter search at beam dump experiments

The 3rd DMNet international symposium 27 September 2023

Daiki Ueda (Technion)

[attractive features]

[attractive features]

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large

[attractive features]

- Viable DM mass range is limited \Rightarrow Thermal mass window (~1 MeV to ~100 TeV)

• One of the DM candidates is thermal DM, i.e., DM is thermalized with SM particles in the early universe

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large

[attractive features]

- Viable DM mass range is limited \Rightarrow Thermal mass window (~1 MeV to ~100 TeV)

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large

[attractive features]

- Viable DM mass range is limited \Rightarrow Thermal mass window (~1 MeV to ~100 TeV)

• One of the DM candidates is thermal DM, i.e., DM is thermalized with SM particles in the early universe

- Freeze-out mechanism can yield DM abundance \Rightarrow DM-SM reaction cross section can be large

~1 MeV

Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles

- Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles
 - Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} g_D A'_{\mu} (i \bar{\chi}_2 \gamma^{\mu} \chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Sub-GeV dark matter $\sim 1 \text{ MeV} \sim 1 \text{ GeV}$

Sub-GeV

- Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles

- Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} (i \bar{\chi}_2 \gamma^{\mu} \chi_1 + H.c.) A': Dark photon, \chi_{1,2}: Pseudo-Dirac DM, J^{\mu}_{EM}: SM EM current$

$$_{2} < m_{A'}$$

- Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles

- Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} (i \bar{\chi}_2 \gamma^{\mu} \chi_1 + H.c.) A': Dark photon, \chi_{1,2}: Pseudo-Dirac DM, J^{\mu}_{EM}: SM EM current$

$$m_{2} < m_{A'}$$

 $m_{2} \propto y/m_{\chi_1}^2 \text{ with } y \equiv \epsilon^2 g_D^2 \left(\frac{m_{\chi_1}}{m_{A'}} \right)^4$

- Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles

- Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} (i \bar{\chi}_2 \gamma^{\mu} \chi_1 + H.c.) A': Dark photon, \chi_{1,2}: Pseudo-Dirac DM, J^{\mu}_{EM}: SM EM current$

$$m_{\chi_2} < m_{A'}$$

 $m_{\chi_1} \propto y/m_{\chi_1}^2 \text{ with } y \equiv \epsilon^2 g_D^2 \left(\frac{m_{\chi_1}}{m_{A'}} \right)^4$

For a fixed $\langle \sigma v \rangle_{ann}$, y becomes smaller (feebly coupled) when m_{χ} gets smaller

- Sub-GeV DM is also a DM candidate but is feebly coupled with SM particles

Hight intensity experiments are needed to search for Sub-GeV DM

- Benchmark model: $\mathscr{L} \supset \epsilon e A'_{\mu} J^{\mu}_{EM} - g_D A'_{\mu} (i \bar{\chi}_2 \gamma^{\mu} \chi_1 + H.c.) A': Dark photon, \chi_{1,2}: Pseudo-Dirac DM, J^{\mu}_{EM}: SM EM current$

$$_{\chi_2} < m_{A'}$$

 $\propto y/m_{\chi_1}^2 \text{ with } y \equiv \epsilon^2 g_D^2 \left(\frac{m_{\chi_1}}{m_{A'}} \right)^4$

For a fixed $\langle \sigma v \rangle_{ann}$, y becomes smaller (feebly coupled) when m_{χ} gets smaller

• Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

- three components of beam dump experiment:

• Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

- three components of beam dump experiment:

Beam particle

e.g., electron, proton, and muon

· Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

- three components of beam dump experiment:

Beam particle

Beam dump(fixed-target)

e.g., electron, proton, and muon

· Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

- three components of beam dump experiment:

Beam particle

e.g., electron, proton, and muon

- Beam dump(fixed-target)

• Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

- three components of beam dump experiment:

Detector

Detect signature of DM

• Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

- three components of beam dump experiment:

Beam dump experiments are high-intensity experiments and are sensitive to Sub-GeV DM

- three components of beam dump experiment:

[Goal of beam dump experiment]

To detect DM signatures produced by beam-target collision

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

where m_{beam} is mass of beam particle, m_{target} is mass of target particle, and E_{beam} is beam energy

 $+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

where m_{beam} is mass of beam particle, m_{target} is mass of target particle, and E_{beam} is beam energy

kinematically allowed

$$+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$$

• Center of mass energy is smaller than collider energy scale, but Sub-GeV DM productions are

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

kinematically allowed

Ex. Beam = electron (
$$m_{\text{beam}}$$
 = 0.5 MeV),

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2 + }$$

$$+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$$

where m_{beam} is mass of beam particle, m_{target} is mass of target particle, and E_{beam} is beam energy

Center of mass energy is smaller than collider energy scale, but Sub-GeV DM productions are

target = nucleon (m_{target} = 1 GeV), E_{beam} = 10 GeV

 $+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}} \simeq 5 \text{ GeV}$

[Center of mass energy]

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2}$$

kinematically allowed

Ex. Beam = electron (
$$m_{\text{beam}}$$
 = 0.5 MeV), target = nucleon (m_{target} = 1 GeV), E_{beam} = 10 GeV

$$\sqrt{s} = \sqrt{m_{\text{beam}}^2 + m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}} \simeq 5 \text{ GeV}$$

Boosted Sub-GeV DM can be produced in beam dump

$$+ m_{\text{target}}^2 + 2E_{\text{beam}}m_{\text{target}}$$

where m_{beam} is mass of beam particle, m_{target} is mass of target particle, and E_{beam} is beam energy

• Center of mass energy is smaller than collider energy scale, but Sub-GeV DM productions are

Beam dump experiment is high luminosity frontier

Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

X

Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

 \times (Beam flux [T⁻¹]) \times

Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

 \times (Beam flux [T⁻¹]) \times (Operation time [T]) \times

Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

- × (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$) ×

Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

- × (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$)× (Track length [L])

Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

- × (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$)× (Track length [L])

Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

- × (Beam flux $[T^{-1}]$)× (Operation time [T]) × (# density of target $[L^{-3}]$)× (Track length [L])
Beam dump experiment is high luminosity frontier

(# of produced DM) = (DM production cross section $[L^2]$)

Beam dump experiment is high luminosity frontier

Beam dump experiment is high luminosity frontier

Ex. Target = Iron, # of injected proton beam = 10^{20}

Beam dump experiment is high luminosity frontier

Beam dump experiment is high luminosity frontier

Beam dump Beam particle

• Center of mass energy and luminosity are determined by beam and target \Rightarrow How about detector?

Detector

• Center of mass energy and luminosity are determined by beam and target \Rightarrow How about detector?

Detector

• Center of mass energy and luminosity are determined by beam and target \Rightarrow How about detector?

e.g., E137, LDND, MiniBooNE, CCM120,

BDX, PIP2-BD, DUNE, CCM200, SHiP, ILC-BDX(proposed), etc

• Center of mass energy and luminosity are determined by beam and target \Rightarrow How about detector?

e.g., E137, LDND, MiniBooNE, CCM120,

BDX, PIP2-BD, DUNE, CCM200, SHiP, ILC-BDX(proposed), etc

Beam dump experiments are divided into three classes of experiments

Beam dump experiments are divided into three classes of experiments

Typical setup:

Beam

Beam dump

Detector

Beam dump

Typical setup:

Beam

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\text{EM}} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + \text{H.c.})A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Detector

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.)A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.)A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.)A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

of detected DM (signal events):

of detected DM (signal events):

~ (# of produced DM) ×

of detected DM (signal events):

 \sim (# of produced DM) \times (Probability DM reaches detector) \times

of detected DM (signal events):

~ (# of produced DM) × (Probability DM reaches detector) ×

cto	r

of detected DM (signal events):

\sim (# of produced DM) × (Probability DM reaches detector) × (Probability DM is detected)

cto	r

of detected DM (signal events):

Acceptance

 \sim (# of produced DM) \times (Probability DM reaches detector) \times (Probability DM is detected)

ct	0	r	
			/

of detected DM (signal events):

 \sim (# of produced DM) \times (Probability DM reaches detector) \times (Probability DM is detected)

 \propto (Beam flux)×(ϵe)²

Acceptance

ct	0	r	
			/

of detected DM (signal events):

 \propto (Beam flux)×(ϵe)²

 \propto (height of detector)² \times (length b/w beam dump and detector)⁻²

Acceptance

\sim (# of produced DM) \times (Probability DM reaches detector) \times (Probability DM is detected)

ct	0	r	
			/

of detected DM (signal events):

 \propto (Beam flux)×(ϵe)²

 \propto (height of detector)² \times (length b/w beam dump and detector)⁻²

Acceptance

\sim (# of produced DM) \times (Probability DM reaches detector) \times (Probability DM is detected)

 \propto (Length of detector)×(ϵe)²

ct	0	r	
			/

of detected DM (signal events):

 \propto (Beam flux)×(ϵe)²

 \propto (height of detector)² \times (length b/w beam dump and detector)⁻²

* Detector cannot be too near because large beam dump or shield is needed to reduce beam-induced BG

Acceptance

\sim (# of produced DM) \times (Probability DM reaches detector) \times (Probability DM is detected)

 \propto (Length of detector)×(ee)²

High flux beam, near* and large detectors are suited for recoil and visible decay search

Background events in recoil and visible decay search

Background events in recoil and visible decay search

Beam dump

Beam

Detector

Detector

Detector

• Large beam dump or shield is needed to remove beam-induced particles, e.g., π^{\pm} , μ^{\pm} , K

- Large beam dump or shield is needed to remove beam-induced particles, e.g., π^{\pm} , μ^{\pm} , K

Detector

• Large beam dump or shield is needed to remove beam-induced particles, e.g., π^{\pm} , μ^{\pm} , K

BG of recoil events

• Large beam dump or shield is needed to remove beam-induced particles, e.g., π^{\pm} , μ^{\pm} , K

• Large beam dump or shield is needed to remove beam-induced particles, e.g., π^{\pm} , μ^{\pm} , K

• Large beam dump or shield is needed to remove beam-induced particles, e.g., π^{\pm} , μ^{\pm} , K

- neutrinos are produced by decay of π^{\pm} , μ^{\pm} ,... in beam dump Ex. $\pi^+ \to \mu^+ + \nu_{\mu}$, $\mu^+ \to \bar{\nu}_{\mu} + e^+ + \nu_{e}$,...

Beam-induced neutrino can be main background events

- π^{\pm} , μ^{\pm} are absorbed or decay at rest by large beam dump \Rightarrow neutrino flux is reduced

Beam-induced neutrino can be main background events

• Large beam dump or shield is needed to remove beam-induced particles, e.g., π^{\pm} , μ^{\pm} , K

Missing energy search, e.g., NA64:

Missing energy search, e.g., NA64:

EM and hadron calorimeter, i.e., active target

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\text{EM}} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + \text{H.c.}) A': \text{Dark photon, } \chi_{1,2}: \text{Pseudo-Dirac DM, } J^{\mu}_{\text{EM}}: \text{SM EM current}$

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A': Dark photon, \chi_{1,2}: Pseudo-Dirac DM, J^{\mu}_{EM}: SM EM current$

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\text{EM}} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + \text{H.c.}) A': \text{Dark photon, } \chi_{1,2}: \text{Pseudo-Dirac DM, } J^{\mu}_{\text{EM}}: \text{SM EM current}$

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\text{EM}} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + \text{H.c.}) A': \text{Dark photon, } \chi_{1,2}: \text{Pseudo-Dirac DM, } J^{\mu}_{\text{EM}}: \text{SM EM current}$

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\text{EM}} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + \text{H.c.}) A': \text{Dark photon, } \chi_{1,2}: \text{Pseudo-Dirac DM, } J^{\mu}_{\text{EM}}: \text{SM EM current}$

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\mathrm{EM}} - g_{D}A'_{\mu}(i\bar{\chi}_{2}\gamma^{\mu}\chi_{1} + \mathrm{H.c.}) A': \mathrm{Dark photon}, \chi_{1,2}: \mathrm{Pseudo-Dirac DM}, J^{\mu}_{\mathrm{EM}}: \mathrm{SM EM current}$

Missing momentum search, e.g., LDMX:

EM and Hadron calorimeter

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\mathrm{EM}} - g_{D}A'_{\mu}(i\bar{\chi}_{2}\gamma^{\mu}\chi_{1} + \mathrm{H.c.}) A': \mathrm{Dark photon}, \chi_{1,2}: \mathrm{Pseudo-Dirac DM}, J^{\mu}_{\mathrm{EM}}: \mathrm{SM EM current}$

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\mathrm{EM}} - g_{D}A'_{\mu}(i\bar{\chi}_{2}\gamma^{\mu}\chi_{1} + \mathrm{H.c.}) A': \mathrm{Dark photon}, \chi_{1,2}: \mathrm{Pseudo-Dirac DM}, J^{\mu}_{\mathrm{EM}}: \mathrm{SM EM current}$

Missing momentum search, e.g., LDMX:

EM and Hadron calorimeter

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{\mathrm{EM}} - g_{D}A'_{\mu}(i\bar{\chi}_{2}\gamma^{\mu}\chi_{1} + \mathrm{H.c.}) A': \mathrm{Dark photon}, \chi_{1,2}: \mathrm{Pseudo-Dirac DM}, J^{\mu}_{\mathrm{EM}}: \mathrm{SM EM current}$

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Acceptance

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Acceptance

* not proportional to $(\epsilon e)^2$ in contrast to recoil and visible search

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

~ (# of produced DM) × (Probability DM reaches detector) × (Probability DM is detected) \propto (Beam flux)×(ϵe)² * not proportional to $(\epsilon e)^2$ in contrast to recoil and visible search

Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_D A'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.) A'$: Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM, J^{μ}_{EM} : SM EM current

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Acceptance

Missing energy search, e.g., NA64:

* Energy transfer to nucleus is modest in Bremsstrahlung process

• # of missing events:

 \propto (Beam flux)×(ϵe)²

Acceptance is good, but the continuous beam(small flux) is needed to reconstruct SM

Missing momentum search, e.g., LDMX:

* Target is thin to reconstruct final state electron

Acceptance

* not proportional to $(\epsilon e)^2$ in contrast to recoil and visible search

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

Missing momentum search, e.g., LDMX:

EM and Hadron calorimeter

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

- Potential BG events:
 - Mistakenly tagged initial beam, e.g., incident lower energy beam

Missing momentum search, e.g., LDMX:

EM and Hadron calorimeter

Missing energy search, e.g., NA64:

EM and hadron calorimeter, i.e., active target Tracker

- Potential BG events:

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

Tracker EM and hadron calorimeter, i.e., active target

- Potential BG events:

 - Photo-nuclear reaction and muon production

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

- Potential BG events:

 - Photo-nuclear reaction and muon production

Missing momentum search, e.g., LDMX:

Missing energy search, e.g., NA64:

- Potential BG events:

 - Photo-nuclear reaction and muon production

* Here, single electron events are assumed to be selected as signal events to remove BG events

Missing momentum search, e.g., LDMX:

Background events in missing energy/momentum search

Missing energy search, e.g., NA64:

- Potential BG events:

* Here, single electron events are assumed to be selected as signal events to remove BG events

Missing momentum search, e.g., LDMX:

- Mistakenly tagged initial beam, e.g., incident lower energy beam \Rightarrow Reducible by tracker in front of target - Photo-nuclear reaction and muon production \Rightarrow Reducible by calorimeter and tracker behind target

Background events in missing energy/momentum search

Missing energy search, e.g., NA64:

- Potential BG events:

 - Neutrino background, e.g., neutrino trident process($eN \rightarrow e \nu \bar{\nu} N$)

* Here, single electron events are assumed to be selected as signal events to remove BG events

Missing momentum search, e.g., LDMX:

- Mistakenly tagged initial beam, e.g., incident lower energy beam \Rightarrow Reducible by tracker in front of target - Photo-nuclear reaction and muon production \Rightarrow Reducible by calorimeter and tracker behind target

Background events in missing energy/momentum search

Missing energy search, e.g., NA64:

- Potential BG events:

* Here, single electron events are assumed to be selected as signal events to remove BG events

Missing momentum search, e.g., LDMX:

- Mistakenly tagged initial beam, e.g., incident lower energy beam \Rightarrow Reducible by tracker in front of target - Photo-nuclear reaction and muon production \Rightarrow Reducible by calorimeter and tracker behind target - Neutrino background, e.g., neutrino trident process($eN \rightarrow e\nu\bar{\nu}N$) \Rightarrow Irreducible but it's negligible

- Potential BG events:

* Here, single electron events are assumed to be selected as signal events to remove BG events

- Mistakenly tagged initial beam, e.g., incident lower energy beam \Rightarrow Reducible by tracker in front of target - Photo-nuclear reaction and muon production \Rightarrow Reducible by calorimeter and tracker behind target - Neutrino background, e.g., neutrino trident process($eN \rightarrow e\nu\bar{\nu}N$) \Rightarrow Irreducible but it's negligible Less than one predicted BG event in both NA64 and LDMX

Excluded regions by beam dump experiments

• Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.)$ A': Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM

Pseudo-Dirac DM saturates observed DM abundance

DM annihilation cross section

Excluded regions by beam dump experiments

* Boosted DM productions in the beam dump are unaffected much by the spin of the DM or the Lorentz structure of its interactions

Proton beam

- \Rightarrow parasitic running of neutrino experiment
 - * MiniBooNE is off-target running to reduce neutrino BG

Sensitivity of future beam dump experiments

* Boosted DM productions in the beam dump are unaffected much by the spin of the DM or the Lorentz structure of its interactions

• Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.)$ A': Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM

- NA64e is an improved NA64

Summary

- The beam dump(fixed target) experiment is high luminosity experiment sensitive to Sub-GeV scale
- Several factors determine the sensitivity of the beam dump experiment (fixed target), e.g., beam flux, beam energy, beam particle, acceptance, detection approach,...
- There are many experiments, but these are not simply competitions to achieve the same physics
 - Ex. Proton beam dump experiments are suited to leptophobic NP search
 - Muon beam dump experiments are suited to muon-philic NP search
 - LDMX is highly sensitive to the DM production process, but it is not sensitive to the DM detection process in contrast to recoil and visible decay searches. * LDMX is missing momentum search
 - \Rightarrow If a positive DM signal is observed, model distinction would be possible
- The beam dump(fixed target) experiment may play a significant role in searching for Sub-GeV DM models involving recoil, visible decay, and missing signatures

Sensitivity of beam dump experiments

• Benchmark model: $\mathscr{L} \supset \epsilon \cdot eA'_{\mu}J^{\mu}_{EM} - g_DA'_{\mu}(i\bar{\chi}_2\gamma^{\mu}\chi_1 + H.c.)$ A': Dark photon, $\chi_{1,2}$: Pseudo-Dirac DM

Continuous beam

The continuous beam doesn't have beam bunches, which makes the trigger easier

Continuous beam with high flux is needed for the missing signature search * The missing signature search experiments are not conducted much because of this

severe beam condition.

e.g. NA64

Beam unrelated background

- Beam-unrelated background: cosmic muons
 - deep underground location of detector
 - time window based on pulsed beam

- directionality of signal events
- muon veto

Beam-unrelated background events are reducible

Pseudo-Dirac DM mass eigenstates

$$-\mathscr{L} \supset m_D \eta \xi + \frac{1}{2} m_M (\eta^2 + \xi^2) + \text{h.c.}$$

$$= m_D(\xi^c)^{\dagger} \eta + \frac{m_M}{2} \left((\eta^c)^{\dagger} \eta + (\xi^c)^{\dagger} (\xi) \right) + 1$$

$$\eta = \frac{1}{\sqrt{2}}(\chi_2 - i\chi_1), \quad \xi = i\frac{1}{\sqrt{2}}(\chi_1 - i\chi_2)$$

$$=\frac{1}{2}(m_D - m_M)(\chi_1^c)^{\dagger}\chi_1 + \frac{1}{2}(m_D + m_M)(\chi_2^c)^{\dagger}\chi_1$$

 $\psi = (\eta, \xi^c)^T, \ \xi^c = i\sigma^2 \xi^*$

h.c.

 $(\chi_2^c)^{\dagger}\chi_2 + h.c.$

 $(\chi_1^c)^{\dagger}\chi_2 = (\chi_2^c)^{\dagger}\chi_1$

Pseudo-Dirac DM kinetic term

$$\mathscr{L} = \bar{\psi} i \gamma^{\mu} D_{\mu} \psi = i \left(\psi_L^{\dagger} \bar{\sigma}^{\mu} D_{\mu} \psi_L + \psi_R^{\dagger} \sigma^{\mu} D_{\mu} \psi_R \right)$$

$$\supset g_D \cdot \left(\eta^{\dagger} \bar{\sigma}^{\mu} A'_{\mu} \eta + (\xi^c)^{\dagger} \sigma^{\mu} A'_{\mu} \xi^c \right)$$
$$\eta^{\dagger} \bar{\sigma}^{\mu} \eta = \frac{1}{2} \left(\chi_2^{\dagger} \bar{\sigma}^{\mu} \chi_2 + \chi_1^{\dagger} \bar{\sigma}^{\mu} \chi_1 + i \chi_1^{\dagger} \bar{\sigma}^{\mu} \chi_2 - i \chi_2^{\dagger} \bar{\sigma}^{\mu} \chi_1 \right)$$
$$(\xi^c)^{\dagger} \sigma^{\mu} \xi^c = \frac{1}{2} \left(-\chi_1^{\dagger} \bar{\sigma}^{\mu} \chi_1 + i \chi_1^{\dagger} \bar{\sigma}^{\mu} \chi_2 - i \chi_2^{\dagger} \bar{\sigma}^{\mu} \chi_1 - \chi_2^{\dagger} \bar{\sigma}^{\mu} \chi_2 \right)$$

$$= ig_D \cdot A'_{\mu} \left(\chi_1^{\dagger} \bar{\sigma}^{\mu} \chi_2 - \chi_2^{\dagger} \bar{\sigma}^{\mu} \chi_1 \right)$$

$$= ig_D \cdot A'_{\mu} \left(\chi_1^{\dagger} \bar{\sigma}^{\mu} \chi_2 + (\chi_1^c)^{\dagger} \sigma^{\mu} \chi_2^c \right)$$

 $= ig_D \cdot A'_{\mu} \bar{\chi}_1 \gamma^{\mu} \chi_2 \quad \checkmark$

 $\psi = (\psi_L, \psi_R) = (\eta, \xi^c)^T, \ \xi^c = i\sigma^2 \xi^*$ $\bar{\sigma}^{\mu} = (1, -\vec{\sigma}), \quad \sigma^{\mu} = (1, \vec{\sigma})$ $D_{\mu} = \partial_{\mu} - ig_D A'_{\mu}$ $\sigma_2 \sigma^\mu \sigma_2 = (\bar{\sigma}^\mu)^T$

