Overview of direct DM detections

26 Sep 2023 The 3rd DMnet symposium "Dark Matter Studies in Accelerator Physics"

Yoshitaka Itow ISEE/KMI Nagoya University

Direct detection of particle dark matter

- Dark matter must be an unknown new particle
 - Weakly Interacting Massive Particle (WIMP)
 - Or maybe some other new particles ?
- Dark matter scattering off an atom can be detected by an ultra low-BG, low-threshold, massive detector
 - \rightarrow "Direct detection" gives a most clear evidence

Liquid/Gas 2-phase Time Projection Chamber

- Prompt scintillation lights (S1) and delayed proportional scintillation lights (S2)
- S1-S2 time difference \rightarrow Z position, S2 spatial profile \rightarrow X-Y position
- S1/S2 ratio \rightarrow Discrimination of nuclear recoil (NR) from electron recoil (ER)

Generation-1 Direct DM detectors O(1t) (~2019)

XENON1T(1t LXe)

Italy •GranSasso

LUX (370kg LXe)

USA •Sanford

Panda-X (580kg LXe)

China -Jinping

Generation-2 Direct DM detectors O(10t) (2020-)

XENONnT (5.9t LXe)

LZ (7t LXe)

PandaX-4T (3.7t LXe) DarkSide-20k(23t LAr)

©XENON Collaboration

Italy •Gran Sasso

©Nick Hubbard, Sanford Underground Research Facility

USA ·Sanford Lab

©PandaX Collaboration

China · Jinping

Eur. Phys. J. Plus (2018) 133: 131

Italy •Gran Sasso

LZ experiment

- 7-ton LXe TPC w/ a 193 V/cm drift field
- Gd-loaded Iq. scintillator for neutron veto
- 238t pure water active muon veto

The LZ Detector

- ER calibrated by ^{83m}Kr, ^{131m}Xe, and CH₃T (post-search)
- NR calibrated by D-D neutrons

LZ first WIMP search result PRL 131, 041002 (2023)

• Flat ER BG due to Rn in LXe

A large ³⁷Ar peak in ER so far

- Data: 23Dec 2021-11May 2022
- 60d x 5.5t exposure
- produced at surface 4.50 Data agreed with BG only model 60 keV 9.8 keV_{ee} 45 keV 90 4.25 80 Solar ν ER β Decays & Det. ER 136 Xe Total background 4.00 70 log₁₀(S2c [phd]) ³⁷Ar Sys. rate unc. 124 Xe Sys. & stat. rate unc. _₿ 601 — ¹²⁷Xe Data / keV 50 Events / 40 30 3.25 20 3.00 0.9 keV_{ee} 2.9 keV_{ee} 5.1 keVee 7.4 keVee 10 25 keV_{nr} 35 keV_{nr} 5 keV_{nr} 15 keV_{nr} 2.75 2 3 14 15 16 17 8 9 10 11 12 13 10 20 30 40 50 60 70 80 Reconstructed Energy [keV_{ee}] S1c [phd] **Energy spectrum with best fit model**

LZ first WIMP SI upper limit

PRL 131, 041002 (2023)

• Note : Limits derived from non-blinded analysis

XENON Collaboration

- 167 members from 27 institutions
- Nagoya, U.tokyo and Kobe from Japan has joined since 2018
- Japan bringing expertise developed in XMASS (low BG, Xe purification) and that in SK-Gd (Gd-loaded water Cherenkov neutron Veto)

LXe purification system

Neutron Veto by Gdloaded Water Cherenkov

XENONnT experiment

- Reuse XENON1T setup replaced by upgraded larger TPC
- Active 5.9t LXe (8.5 t total)

ER BG reduced by x5 from XENON1T

Gd-loaded water water Cherenkov (so far pure water)

Inner neutron veto region

700t water tank for muon veto

XENONnT first science run data "SRO"

- SR0: Jul 6 2021 Nov 10 2021, 95.1 live days
- Low drift field (23V/cm) due to electrode problem Still comparable resolution & threshold to XENON1T
- Blind analysis applied

- ER calibration: ²²⁰Rn, ³⁷Ar, ^{83m}Kr (not contamination, intentionally put for calibration and removed)
- NR calibration: ²⁴¹AmBe

ER BG comparison

Low-E ER excess checked by XENONnT SR0

- XENON1T low energy excess of ER
- Possible hint for solar axion or ³H BG?
- Thanks to x5 lower ER BG than XENON1T
- Excess was not confirmed in SR0 data

XENONnT first WIMP search

- After unblinding, 152 in ROI, 16 in WIMP region
- Best fit to the data is compatible with BG-only hypothesis (3 observed, w/ BG 2.0 \pm 0.2, 1.3 WIMP for 200GeV/c² case) _{PRL 131, 041003(2023)}

	Nominal	Be	est fit
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16
CE <i>v</i> NS	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4\substack{+0.9\\-0.8}$	0.32 ± 0.06
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total background	154	152 ± 12	$2.03\substack{+0.17 \\ -0.15}$
WIMP		2.6	1.3
Observed		152	A 3

Signal region for 200 GeV/c² WIMP case Best-fit $\sigma = 3.22 \times 10^{-47} \text{ cm}^2$

XENONnT SR0 WIMP limit S(σ SI)

Generation-3 O(100t) future direct DM detectors (2027?-)

Site: TBD...

ARGO(300t LAr)

Canada •SNOLab ?

2021 Jul : MOU : XENON/DARWIN, LZ (XLZD) 2022 Jun : 1^{st} Summer meeting at KIT

XLZD white paper :arXiv:2203.02309 "A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics"

Toward next generation LXe direct detection

WIMP mass [GeV/c²]

Target ER BG level in future LXe

Goal: Negligible to intrinsic Solar v BG

Masaki Yamashita, TAUP2019

Masaki Yamashita, TAUP2019

R&D for the next generation LXe TPC

How to achieve 1/10 Rn BG ?
How to build x2 larger TPC ?
How to procure x5 Xe ?

Lowest RI PMT (U.Tokyo) R13111 (by XMASS)

MPPC hybrid PMT (Nagoya)

DAMA/LIBRA seasonable modulation

Modulation Amplitude [dru]

0.00

-0.01

-0.02

-0.03

-0.04 + 0

COSINE-100, PRD 106, 052005(2022)

Energy [keV]

12

14

16

18

20

• ANAIS-112 (112.5kg Nal x 3 years)

1-6 keV modulation amplitude

COSINE-100	0.0067 ± 0.0042	
DAMA/LIBRA	0.0105 ± 0.0011	
ANAIS-112	-0.0034 ± 0.0042	

See Hyunsu Lee (IBS) talk in 2nd DMnet Symposium https://indico.cern.ch/event/1181341/contributions/4964894/²³

Directional search

Nuclear Emulsion (NEWSdm)

Directional search sensitivity (gas TPC)

arXiv 2008.12587

10-10K m2 TPC w/ He:SF6 gas at 755:5 Torr in 6 years

Summary

- Direct dark matter searches have been developed quite successfully by liquid xenon technology in this 20 years.
- O(10t) Gen-2 expts. XENONnT and LZ now successfully started and approaching $\sigma(SI) < 10^{-47} \text{ cm}^2$.
- XENON1T Low-E ER excess is excluded by XENONnT with x5 lower ER BG achieved.
- In next 5 years we may see first hint (i.e. WINO DM) with 20 t • yrs
- To get an evidence, O(100t) Gen-3 expts w/ >200t · yr desired. On-going R&D on DARWIN 50t, now being expanded by the new XLZD consortium.
 Directional searches will play a key role for ultimate future goal.

Backup

2019-2020 Construction under COVID-19

XENONnT SR0 WIMP limit S(σSI)

XENONnT SR0 WIMP limit S(₅SD)

arXiv:2303.14729

WIMP signal acceptance

XENONnT SR0 event locations

Unblinded events relatively concentrate upper-right But no evidence of detector nonuniformity found

Phys.Rev.Lett. 127 (2021) 26, 261802

(a) $\log_{10}(n_e/S1)$ vs. S1

XMASS: 1st idea of 10-ton liquid Xe for DM and Sol-v/ $\beta \beta$

- Many ground-breaking ideas since 2000
 - Pointing out LXe can be ideal multipurpose experiments
 - ⁸⁵Kr removal by distillation (essential break-through)
 - Self-shielding by high-Z LXe surface
 - 1kt Water Cherenkov neutron/muon veto
 - World best low-BG PMT

 Long term Japan-Korea collaboration in XMASS Yeong Duk Kim, Nam Young Kim, Yong Hamb Kim (CUP,IBS) Byeongsu Yang (CAPPR, IBS) (now SNU) Min Kyu Lee, Kyoung Beom Lee (KRISS) <u>as of 2019</u>

RI-loaded rod for in-situ calibration contributed by Korea

