Nuclear Physics Mid Term Plan in Italy

LNF – Session

Frascati, December 1st - 2nd 2022

Facilities @LNS and @LNF

Magnetically-confined and laser-induced plasmas

Dario Lattuada

KORE University, Enna, Italy Laboratori Nazionali del Sud – INFN, Catania, Italy

I OGO not available.

INSERT COIN(S)

Fundings needed.

Nuclear Physics Mid Term Plan in Italy – LNF Session

In-plasma nuclear reaction studies: PANDORA

Laser-induced nuclear reaction studies: Versatile Array for Laser-induced Astrophysics Research

CONTROL ROOM Hinternal (soffastrave) = 4,90 m Uppr220.00 m² LASER CLEAN ROOM Hinternal (soffastrave) = 4,90 m Uppr220.00 m² LASER CLEAN ROOM Uppr220.00 m² UPPr240 UPPr2

INFN

MFN

Nuclear Physics

¹INFN – Laboratori Nazionali del Sud, I-95125 Catania, Italy ² INFN – Sez. di Perugia, I-06123 Perugia, Italy ³INFN – Sez. di Bologna, I-40127 Bologna, Italy ⁴ INFN – TIFPA, I- 38123 Povo TN, Italy ⁵INFN – Laboratori Nazionali di Legnaro, I-35020 Legnaro PD, Italy ⁶ Department of Physics, University of Perugia, I-06123 Perugia, Italy ⁷ INAF – Istituto Nazionale di Astrofisica – Osservatorio Astrofisico di Catania, I-95123 Catania, Italy ⁸ Institute of Nuclear Science, ATOMKI, HU-4026 Debrecen, Hungary ⁹Max Planck Institute – Institute of Plasma Physics, D-85748, Garching ¹⁰ INAF – Osservatorio Astrofisico d'Abruzzo, I-64100 Teramo – Italy ¹¹ Department of Engineering, University of Brescia, I-25123 Brescia, ¹² Department of Physics, University of Padova, I-35131 Padova, Italy ¹³ Department of Electrical, Electronics and Computer Engin., University of Catania, I-95126 Catania, Italy ¹⁴GANIL, F-14000 Caen, France ¹⁵ Department of Engineering, Mediterranean University of Reggio Calabria, I-89124 Reggio Calabria, Italy ¹⁶ Department of Physics, Jyvaskyla University, FI-40014 Jyväskylä, Finland ¹⁷ Johannes Gutenberg University Mainz, D-55122 Mainz, Germany ¹⁸ Department of Physics, University of Milano, I-20133 Milano, Italy ¹⁹ INFN- Sez. di Milano, I-20133 Milano, Italy ²⁰ Politecnico di Milano, I-20133 Milano, Italy ²¹GSI – D- 64291 Darmstadt, Germany ²² Department of Physics, University di Camerino, I-62032 Camerino MC, Italy ²³ Agenzia Nazionale per le Nuove Tecnologie (ENEA), I-40129 Bologna, Italy ²⁴ Department of Physics, University of Catania, I-95125 Catania, Italy ²⁵ INFN – Sez. dell'Aquila, I-67100 L'Aquila, ²⁶ Department of Physics, Università di Trento, 38123 Povo TN, Italy ²⁷ CNAO, I-27100 Pavia, Italy ²⁸ Department of Engineering and Architecture, Università di Parma, Modena e Reggio Emilia, Italy ²⁹ Department of Physics, University di Messina, I-98122 Messina, Italy ³⁰ Department of Engineering and Architecture, Universitá degli Studi di Enna "Kore", I-94100 Engr ³¹ Università degli Studi di Modena e Reggio Emilia Dipartimento di Ingegneria Enzo Ferrari

Pandora @ LNS

Plasmas for

Astrophysics

Observation and

Radiation for

Archaeometry

Nuclear

Decay

____ Dario Lattuada

PANDORA is a facility whose construction is supported by INFN in the frame of <u>PANDORA_Gr3</u> project; it aims at building an innovative compact and flexible magnetic plasma trap, for fundamental physics studies and interdisciplinary and applied research. The main goal is the study of B-decays in the plasma (never done so far), i.e. in ionization conditions similar to some stellar environments and relevant for nucleosynthesis of chemical elements in the cosmos.

Takahashi et al. 1987, Phys Rev C 36, 1522

<u>A NEW CHALLENGE</u>: Reproduce in laboratory some stellar-like conditions and measure the expected variations of nuclear lifetime in β -decaying nuclei

P	Magnetic Trap
N D	Plasma Diagnostics System
O R A	HPGe γ-detectors Array

- 1. An innovative superconducting **magnetic plasma trap**, able to produce and confine plasmas with electron-ion density up to 10^{13} cm⁻³ and electron temperature of T_e~0.1-30 keV;
- 2. An advanced **plasma multi-diagnostic system**, consisting in a set of noninvasive diagnostic tools capable of operating simultaneously for the nonintrusive monitoring of the plasma thermodynamic properties and the measurement of plasma parameters;
- 3. An **Array of 14 HPGe (High-purity Germanium) detectors** for γ-ray spectroscopy, surrounding the plasma trap.

Goal: to investigate Electron-Cyclotron-Resonance plasma thermodynamical proprieties (electron density and temperature) in compact trap;

→ A gas or a metallic material vaporized by an oven is fluxed inside a plasma chamber

→ Plasma is excited by Electron-Cyctron-Resonance by microwaves and confined by magnetic fields

→ A multidiagnostic system surrounding the plasma chamber was developed to measure plasma parameters

Method: ECR plasmas emit radiation from microwave to hard X-rays and this radiation can be used to investigate plasma parameters in different regimes;

Plasma Emitted Radiation

PANDORA: 14 HPGe detector array surrounding the plasma trap

GS Mauro et al, Frontiers in Physics, 621(2022) E Naselli et al, Frontiers in Physics, 692 (2022) A Gausdouff et al, Frontiers in Physics, 2022

PANDORA: Online plasma multidiagnostic

E Naselli et al, Journal of Instrumentation 14 (10), C10008 - 2019

Diagnostic tool	Sensitive Rang	e Measurement	Resolution - Measure Error	
	1 ÷ 30 keV	Volumetric soft X-ray Spectroscopy:	Resolution ~ 120 eV	
500		warm electrons temperature and density	$\epsilon_{ne} \sim 7\%$, $\epsilon_{Te} \sim 5\%$	
LIDC - Astronom	30 ÷ 2000 keV Volumetric hard X-ray Spectroscopy:		FWHM @ 1332.5 keV < 2.4 keV	
HPGe detector		hot electrons temperature and density	$\epsilon_{ne} \sim 7\%$, $\epsilon_{Te} \sim 5\%$	
V: 11 I: 1. C	1 10 17	Optical Emission Spectroscopy:	$\Delta \lambda = 0.035 \text{ nm}$	
Visible Light Camera	1 ÷ 12 eV	cold electrons temperature and density	R = 13900	
V : 1 1	0 151 17	2D Space-resolved spectroscopy:	Energy Resolution ~ 0.3 keV	
X-ray pin-hole camera	2 ÷ 15 keV	soft X-ray Imaging and plasma structure	Spatial Resolution ~ 0.5 mm	
W-band super-heterodyne	W-band	Plasma-induced Faraday rotation:		c.
polarimeter	90 ÷ 100 GHz	line-integrated electron density	E ne ~ 25%	Э
Microwave Imaging Profilometry (MIP)	60 ÷ 100 GHz	Electron density profile	ε _{ne} ~ 1% ÷ 13%	
Multi-pins RF probe	10 ÷ 26.5 GHz	Local EM field intensity	$\epsilon \sim 0.073 \div 0.138 \text{ dB}$	
Multi-pins RF probe + Spectrum Analyzer (SA)	10 ÷ 26.5 GHz (probe range)	Frequency-domain RF wave	SA Resolution bandwidth: RBW = 3 MHz	
Multi-pins RF probe +	10 ÷ 26.5 GHz	Time-resolved radiofrequency burst	80 Gs/s (scope)	
Scope + HPGe detector	(probe range)	and X-ray time-resolved Spectroscopy	time scales below ns	
Thomson Scattering	0.5 ÷ 500 eV	EEDF, absolute electron density global electron drift velocity	Condition-dependent (a function of spectral width, dependent on temperature, and area, dependent on density)	

Microwave Polarimetry for the non-invasive measurement of the plasma density

Polarimetry: density measurement is based on the evaluation of the Faraday rotation angle of the polarization plane of an e.m. wave that passes through the magnetoplasma

OrthoMode Transducer (OMT)

Injection and extraction flanges with horn-antennas

Horn antennas

Polarimetry: based on the evaluation of the Faraday rotation angle of the polarization plane of an e.m. wave that passes through the magnetoplasma

$$\theta = \int_0^L \frac{\omega}{2c} \left[\sqrt{1 - \frac{\omega_p^2}{\omega(\omega - \omega_{ce})}} - \sqrt{1 - \frac{\omega_p^2}{\omega(\omega + \omega_{ce})}} \right] \cdot dz \sim \left(\frac{e^3}{2\pi m^2 c^4} \int_0^L \frac{n_e}{2\pi m^2 c^4} \right) \lambda^2 = RM \left(\lambda^2 \right)$$

O-wave and X-wave different propagation constant in anisotropic plasma

Known the magnetic field B, by a fitting procedure is possible to measure the plasma density:

E. Naselli et al., Journal of Instrumentation, Vol13, (2018).

Pandora @ LNS

Soft X-ray Imaging and Space-resolved spectroscopy for the local measurement of plasma density and temperature

Pandora @ LNS

CCD Camera

- Sensitivity range $\sim 2 \div 20$ keV
- Sensor Size: 13.3 mm x 13.3 mm (1024 x 1024 Pixels)
- Pixel size: 13 µm x 13 µm
- Lead Pin-hole (diameters 400 µm)
- **Energy Resolution ~ 260 eV @ 8 keV**

Advanced design of the plasma chamber walls

Fluorescence lines can be used to get info about where the electrons collide on the chamber walls

(plasma vs losses X-radiation emission)

Innovative soft X-ray Shutter for time resolved measurements:

- Platinum-Iridium (PtIr) material;
- 6 mm aperture diameter;
- Capable of blocking X-ray energy up to 30 keV;
- Total opening time: 4.4 milliseconds

Pandora @ LNS

Dario Lattuada

Nuclear Physics Mid Term Plan in Italy – LNF Session

Spatially-resolved X-ray Spectroscopy

It is possible pixel-by-pixel to investigate the balance between plasma emissions vs. losses emissions

Plasma radius evaluation (uncertainty of 5%)

E. Naselli et al., Condensed Matter 7(1), 5, 2022 E. Naselli et al., JINST (2022) **17** C01009 S. Biri et al., JINST 16, 2021, P03003 In SPhC each pixel becomes an independent spectrally-sensitive detector: decoupling of photon number vs. energy

POWERFUL Investigations: <u>SPATIALLY-RESOLVED SPECTROSCOPY</u>

The data on the spectrum contains the spatial information on the emitting positions:

the definition of a ROI allows the imaging of the elemental distribution.

High spatial and energy resolutions:

Energy Resolution ~ 260 eV @ 8 keV
 Spatial Resolution ~ 450 µm

Spectrally-resolved X-ray Imaging

Comparing experimental spectrum vs. theoretical one

B. Mishra et al., Physics of Plasmas 28, 102509 (2021) B. Mishra et al., Condensed Matter 6(4) (2021) 4 **Nuclear Physics**

Term Plan in **Italy**

Dario Lattuada

Towards PANDORA...

Multi-diagnostics approach in the Flexible Plasma Trap @ INFN-LNS

FN

Versatile Array for Laser-induced Astrophysics Research

← Yes, we do need a logo

D. Lattuada, G.L. Guardo, A. Bonasera, M. La Cognata, A. Tumino, L. Lamia, A.A. Oliva, S. Palmerini, R.G. Pizzone, G.G. Rapisarda.

University of Texas – CHEDS, Austin, US Cyclotron Institute, Texas A&M, US ELI-NP - IFIN-HH, Bucharest, Romania ENEA ABC, Frascati, Italy 15

INFN

Nuclear Physics

Dario Lattuada

Nuclear Physics Mid Term Plan in Italy – LNF Session

Curtesy of A. Tumino

INFN

Nuclear Physics Mid Term Plan in Italy/

Example: $T \sim 15 \times 10^6$ K ($T_6 = 15$)

reaction	C.barrier (MeV)	E ₀ (keV)	area under Gamow peak
p + p	0.5	5.9	7.0x10 ⁻⁶
α + ¹² C	2.242	56	5.9x10 ⁻⁵⁶
¹⁶ O + ¹⁶ O	10.349	237	2.5x10 ⁻²³⁷

For T ~ 200x10⁶ K, $E_0 \sim 320 \text{ keV}$ KT ~ 17 keV

Gamow peak: most effective energy region for thermonuclear reactions

It is where measurements should be carried out

10⁻¹⁸ barn < **σ** < 10⁻⁹ barn

- EXTRAPOLATION

- LUNA MV – JUNA: with background suppression

.. explore directly in laboratory plasmas!

Nuclear Physics Mid Term Plan in Italy – LNF Session

Evaluating the electron screening

Relatively small enhancements due to electron screening at energies E/U = 100 could cause significant errors in the extrapolation to lower energies, if the cross-section curve is forced to follow the trend of the enhanced cross sections without correcting for screening.

The whole effect of screening in this case $(U_0 << E_{max})$ is then that the reaction rate with screening $e^{-\frac{U_0}{KT}}$ neglected has to be multiplied by the factor

$$\begin{split} R_D &= 2.812 x 10^{-7} \rho^{-1/2} T_9^{1/2} \zeta^{-1} \ (cm) \\ Weak \ screening: R_D \gg r_{nuclei} \ (stars) \\ Intermediate \ screening: \langle E_C \rangle \approx KT \\ \ Strong \ screening: \langle E_C \rangle \gg KT \end{split}$$

ELECTRON SCREENING AND THERMONUCLEAR **REACTIONS E. E. SALPETER 1954**

Nuclear Physics

$$\sigma_{stdexp} \neq \sigma_{plasma} \approx \sigma_{stars} \neq \sigma_b = \sigma_{THM}$$

Coulomb Explosion of cryoclusters

Step 1

Clusters are irradiated by high intensity laser pulse (~10¹⁶~10¹⁸ W/cm²).

Step 2

Laser pulse energy is first absorbed by electrons via heating mechanisms such as rapid collisional heating.

Step 3

Electrons escape from the cluster and leave positive charge build-up on the cluster.

Step 4

The cluster "explodes" and deuterons acquire multi-keV kinetic energy.

Nuclear Physics Mid Term Plan in Italy

Nuclear Physics Mid Term Plan in Italy – LNF Session

Nuclear Physics

Exp. Campaigns @ UT Petawatt Laser 2011&2016 Nuclear fusion from laser-cluster interaction E = 100-140 J Pulse duration: 140 fs D_2 gas tank (³He mixture) Rep. Rate: ~ 1/hour Supersonic Nozzle (high backing pressure) CW: 1057 nm Intensity ~ 10²¹ W/cm² scintillator $d + d \rightarrow {}^{3}\mathrm{H}e(0.82MeV) + n(2.45MeV)$, 10²J released in ∼ 10⁻¹³ s $d + d \rightarrow p(3.02MeV) + t(1.01MeV)$ High power laser pulse in $d + {}^{3}\text{H}e \rightarrow p(14.7MeV) + {}^{4}\text{H}e(3.6MeV)$ Most of the laser pulse energy is absorbed by the atomic clusters. deuterium ions Clusters experience Coulomb Kinetic Energy: 1-10² keV explosion after electrons escape. Density ~ 10^{18} atoms/cm³ DD fusion occurs, and 2.45MeV fusion neutrons are produced. $10^{5-}10^{7}$ neutrons per shot (and $D^{3}He$)

Ditmire T. et al., Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489–492 (1999); Ditmire T. et al., Nuclear fusion in gases of deuterium clusters heated with a femtosecond laser, Physics of Plasmas 7, 1993 (2000); Bang W., et al., Temperature Measurements of Fusion Plasmas Produced by Petawatt-Laser-Irradiated D2–3He (...) Clustering Gases, Phys. Rev. Lett. 111, 055002 (2013) Barbui M. et al, Measurement of the Plasma Astrophysical S Factor for the 3He(d,p)4He Reaction in Exploding Molecular Clusters, Phys. Rev. Lett. 111, 082502 (2013); Lattuada D. et al, Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas, Phys. Rev. C 93, 045808 (2016). Quevedo H., et al, Neutron enhancement from laser interaction with a critical fluid Physics Letters, Section A, 382 (2-3), (2018).

INFN

Signals and results

Dario Lattuada

Versatile Array for Laser-induced Astrophysics Research

. Science-driven, portable, cost-efficient

- cryo-cooled supersonic nozzle
- compact interaction chamber
- neutron ToF detectors (plastic/liquid scintillators)
- charged particle ToF detectors (SiC/CVD diamond detectors + FCs)
- . 2 TPS with MCP readout
- . CR39 supplies and ancillary equipment
- additional R&D:
- ¥ & e⁻ calorimeters, TimePix3, MCP as ToF

The Nozzle

S. Grieser, Nm-sized cryogenic hydrogen clusters for a laser-driven proton source Rev. Sci. Instrum. 90, 043301 (2019) G.D. Glenn, Thesis @ University of Texas at Austin (2019)

(a)

INFN

Dario Lattuada

(b)

Nuclear Physics Mid Term Plan in Italy – LNF Session

(C)

The ToF particle detectors

Dario Lattuada

Nuclear Physics Mid Term Plan in Italy – LNF Session

The Thomson Parabola Spectrometers

Dario Lattuada

Protons

Nuclear Physics Mid Term Plan in Italy – LNF Session

1951 2021

C6+

R. Prasad et al., Calibration of Thomson parabola—MCP assembly for multi-MeV ion spectroscopy, Nuclear Instruments and Methods in Physics Research A 623 (2010)

Dario Lattuada

(INFN

Nuclear Physics

Dario Lattuada

Nuclear Physics Mid Term Plan in Italy – LNF Session

INFN

___ Dario Lattuada

30

•	E4:	100TW	22-100fs	2.2J	10Hz
	E5:	1PW	24-1000fs	25J	1Hz
nuclear physics	HPLS:	(2x) 10PW	25fs	10 ² J	1/hour
mm	TPW:	1PW	140fs	140J	1/hour
CENTER FOR HIGH ENERGY DENSITY SCIENCE					
CLPU/~	VEGA1	: 100TW	30fs	0.6J	10Hz
CENTRO DE LÁSERES PULSADOS	VEGA2	: 200TW	30fs	6J	10Hz
	VEGA3	: 1PW	30fs	30J	1Hz

Istituto Nazionale di Fisica Nucleare

I-LUCE facility

I-LUCE: INFN Laser IndUced particle acCeleration

aim: electron, proton acceleration; nuclear reaction
in warm dense matter; ion-plasma interaction studies

Peak power : 1 PW Pulse duration: <25fs Repetition rate: 1 Hz System designed to be upgradable up to 1 PW

Funds:

Dario Lattuada

Nuclear Physics Mid Term Plan in Italy – LNF Session

"Facilities" @LNS and @L	NF		Dario Lattuada Nuclear	34 Physics Mid Term Plan in Italy – I NE Session	
1 Dhase					
I Phase			Laser Power	50-250 TW	
Laser tender is st	arting (2022)	for Breast Cancer	Energy per pulse	≥ 1-10 J	
Middle 2024 the fi	rst experimental statio	Therapy	Pulse duration	<= 25 fs	
Two locor lines or	d three every	ational	Contrast ratio ns	> 10 ⁸	
IWO LASET LINES AI	d chree experimental st	actons:	Contrast ratio @5 ps	> 10 ⁵	
	Laser Power	~ 1 TW			
Fusion studies	Energy per pulse	25-30 mJ	Contrast ratio @100	> 10 ¹⁰	
Acceleration	Pulse duration	25-30 fs*	ps (ASE)		
Plasma-ion interaction	Contrast ratio ns	< 1*10-8	Repetition rate	1 Hz	
	Contrast ratio @5 ps	> 10 ⁵	Path to upgrade up to	Compressor optics ready	
	Contrast ratio @100 ps (ASE)	> 10 ¹⁰	1PW	for the upgrade up to 1PW	
	Repetition rate	10 Hz	Pointing stability	<50 µrad	
SECTION 1 OSCILLATOR FRONT-END			Beam diameter (FWHM)	50-60 mm	
¦	LOW ENERGY COMPRESSOR LE BEAMLINE	;	Strehl ratio	>=0.65 (without deformable mirror) >=0.8 (with deformable mirror)	

Ш

N

Dario Lattuada

35

2 Phase

Laser	tender	will	start	in	2023
-------	--------	------	-------	----	------

- At the end of 2025 the first call for external users
- proton, ion, electron
 acceleration;
- biological experiments;
- neutrons and gamma production;
 - ion-plasma interaction;
- nuclear studies in plasma

Laser Power	1 PW
Energy per pulse	≥ 25 J
Pulse duration	<= 25 fs
Contrast ratio ns	> 10 ⁸
Contrast ratio @5 ps	> 10 ⁵
Contrast ratio @100 ps (ASE)	> 10 ¹⁰
Repetition rate	1 Hz
Path to upgrade up to 1PW	Compressor optics ready for the upgrade up to 1PW
Pointing stability	<50 µrad
Beam diameter (FWHM)	50-60 mm
Strehl ratio	>=0.65 (without deformable mirror) >=0.8 (with deformable mirror)

 \checkmark Proton, electron and neutron sources

Free Electron Laser radiation

V Dosimetry and Radiobiology of «FLASH» beams (electrons, protons, gamma)

Cultural Heritage: PIXE studies with laser-driven protons

Space applications:

laser-driven beams could easily reproduce the space radiation quality

Radioisotopes production:

laser-driven beams could easily produce high intensity charged particles beams

Imaging at the molecular level with **ultrafast X-Rays** (ex radiation chemistry of the radiolysis) ✓ Stopping powers in plasma

Studies on Nuclear Reactions in plasma with particular focus on the pB reaction* (PROBONO Cost Action)

✓ Materials studies

✓ MORE..

Ion-plasma interaction: UNIQUE CAPBILITY OF INFN-LNS

🗕 Dario Lattuada

37

FLAME @ SPARC_LAB

- FLAME itself
- a. Electron acceleration by self injection
- b. Light ion acceleration by TNSA
- c. Air propagation by LIDAR

• FLAME + SPARC

- a. Compton scattering
- b. Electron acceleration
 - by external injection

Massimo Ferrario, Maria Pia Anania.

🗕 Dario Lattuada

28

INFŃ

Nuclear Physics

FLAME

Max energy: 7J Min bunch duration: 23 fs Wavelength: 800 nm Spot-size @ focus: 10 μ m Max power: 300 TW Contrast ratio: 10¹⁰ Intensity: 10¹⁹ W/cm² (\rightarrow 10²¹)

Laser wakefield accelerators (LWFA) are a novel type of accelerators capable to produce accelerating field up to 100 GV/m. This feature gives the possibility to have very compact accelerators able to accelerate electrons to GeV energies in few centimetres.

Nuclear Physics

<u>FLAME</u>

Max energy: 7J

Min bunch duration: 23 fs

Wavelength: 800 nm

Spot-size @ focus: 10 µm

Max power: 300 TW

Contrast ratio: 10¹⁰

Intensity: 10^{19} W/cm² (\rightarrow 10²¹)

External injection: electrons accelerated by the linac injected with the right phase on the creast of the wakefield to be further accelerated. Electrons exit with a higher energy and a quality comparable to that of incoming electron beam.

EUPRAXIA

1st Phase: 500TW laser will be installed

2nd Phase: second 500TW (or upgrade to 1PW)

Two 500TW laser could satisfy the 24h/7day operation request in parallel on different experiments.

	Units	value
Central wavelength	nm	800
Bandwidth	nm	60 - 80
Repetition rate	Hz	1 - 5
Max energy before compression	J	20
Max energy on target	J	13
Min pulse length	fs	25
Max power	TW	500
Contrast ratio		10 ¹⁰
Laser spot size at focus (optics dependent)	μm	2 - 50
Peak power density at focus (optics dependent)	W/cm ²	$10^{22} - 10^{19}$

