Medical applications

- Different types of radiation (X, γ , β , p, heavy ions..)
- Broad energy range (~keV 100 MeV)
- Application-specific requirements

Making an comprehensive summary is a very difficult task!

First challenge: Find a way to group the **many ongoing activities** into 3 areas

- Treatment monitoring and optimisation
 P. Cerello
 - **2) Dosimetry, quality assurance and radiotherapy** G. Petringa
- **3) X-ray and gamma** (and β) **imaging** L. Brombal

Thanks to the Conveners for the review work and to all the contributors!

Nuclear Physics

Imaging applications: challenges and innovation

X-rays

Spectral imaging /Phase contrast

- High spatial resolution
- Spectroscopic capabilities @ high photon rate
- Broad field of view
- Cost-effective

γ**-rays**

SPECT

- High interaction-efficiency scintillator (for high-energy photons)
- Broad field of view
- Cost-effective

SPECT – treatment dosimetry

- Thin and lightweight
- Rugged
- biocompatible

PET -> Time of Flight (ToF)

- High time resolution
- Broad field of view
- Cost-effective

β radiation

Bio-medical microscopy

- High spatial resolution
- Fast readout
- Broad field of view
- Cost-effective

Radio-guided surgery

- compact
- Hand-held device
- High-sensitivity

Nuclear Physics Mid Term Plan in Italy

Imaging applications: challenges and innovation

Detector	Experiment	Description	Critical item for R&D	Expected time
Timepix4 - hybrid pixel detector	MEDIPIX4-CSN5	4-side buttable large spectroscopic, time resolving imaging detector	Spectroscopic, High spatial and time resolution (ToA), TSV technology	Timepix4 bump- bonded available, TSV 2023
Medipix4 - hybrid pixel detector	MEDIPIX4-CSN5	4-side buttable large, multi- threshold photon-counting imaging detector	Multi-threshold photon-counting High count rate (clinical) TSV technology	Medipix4 2023, TSV 2023
OMHP detector	PEROV	hybrid organic-inorganic semiconductor	Deposition of perovskyte microchannels on CMOS substrate -> scalability	Proposal in preparation Prototype end of 2025
ALPIDE Monolithic Si pixel CMOS	ISOLPHARM	Large area, high resolution beta imager	Scalability for large area	2024
SiPM	FBK – INFN TBD	SiPM coupled to fast LSO scintillator for ToF-PET	TSV for large area scalability	Demonstrator in 2025
aromatic hydrocarbon isomer scintillator ; readout SiPMs array	WIDMapp	Wearable detectors for beta and gamma radiation	Detector engineering beyond prototype • Extended tests on patients	2027
Scintillating crystal of p- terpheynyl	CHIRONE/CHIR2	Beta detector for radioguided surgery	Extended tests in-vivo and on patients	2027

Dosimetry, Quality Assurance and radiotherapy: challenges and innovation

FLASH-RT

Ultra-high dose rates (> 50 Gy/s)

- On-line absolute and relative dosimetry
- Linearity up to (at least) MGy/s
- High resistance to radiation damage
- High time resolution (hundreds ns or higher)

MICRODOSIMETRY

Better estimation of the Relative Biological Effectiveness (RBE)

- Treatment Planning Software optimization
- Simultaneous dosimetric and microdosimetric characterization of clinical proton/ion beams
- Small size and near tissue equivalence
- No (or low) energy dependence

NEW DEVICES FOR DOSIMETRIC PURPOSES

High accuracy (<2 %) dosimetry of clinical beams

- Dosimetry without perturbing the incoming radiation beam
- On-line proton/ion range measurements (Bragg peak reconstruction)
- Simultaneous dosimetric and microdosimetric characterization of clinical proton/ion beams

P. Cardarelli, R. Catalano, M. Lunardon

Dosimetry, Quality Assurance and radiotherapy

Detector	Experiment	Comment/description	Critical items for R&D	Expected time
Mixed	FRIDA	Calorimeter, scintillators, SiC dosimeters	 Real-time FLASH-RT dosimeters Absolute dosimetry for FLASH-RT (guidelines and code of practice) 	2025
UCD	LEMRAP	Waterproof solid state device (patented by INFN)	- Real-time FLASH-RT dosimeter - Linear response up to 6.5 MGy/s	2025 (actually in the final prototype stage)
DIAMONDI	DIODE	Single crystal diamond detector	 Fast response Reduction of the experimental uncertainties (e.g. those associated with the detector positioning) 	2024
TEPC	MUSICA	Tissue-Equivalent Proportional Counters	 - Isotropic response - Implementation of microdosimetry in Italian new BNCT facilities 	2025
DIAMONDII	3D-DOSE	Sinthetic diamond (both scCVD and pcCVD)	- Bigger active surface at lower costs with respect to the conventional diamond detectors (potentially pixelated detectors)	2027
A-Si:H	HASPIDE	Hydrogenated Amorphous Silicon Devices	- Deposition of the material as a thin layer of few micrometers (1-10) over many substrates, including flexible ones like Kapton	2024
SiC	PRAGUE/DoT-SiC	Silicon Carbide detectors	 Real-time proton range measurements Dosimetric/microdosimetric measurements 	2023 (actually in the final prototype stage)

Cardarelli, Catalano , Lunardon

Treatment monitoring and optimization: challenges and innovation

Treatment monitoring

Beam monitoring (intensity and direction)

charged particle therapy

- Fast response,
- high counting rate
- Good timing
- Higher sensitivity
- Pile-up reduction
- Radiation hardness

Range verification

charged particle therapy

- Fast response
- in-vivo verification
- dose profile for secondary fragments
- integration with beam monitoring

Treatment optimization

Boron Neutron Capture Therapy

neutron therapy

- in-vivo dosimetry by single photon detection
- SPECT and Compton imaging

Nuclear Fragmentation charged particle therapy

Nuclear Physics

- large acceptance, high efficiency
- isotope resolution

Cardarelli, Catalano , Lunardon

Treatment monitoring and optimization

DET	experiment	Comment/ description	Critical items for R&D	Expected time
LGAD	MoveIt	UltraFastSiliconDetector prototype for beam monitoring		Completed
LGAD	EX-FLU	Radiation tolerant Silicon detectors	Radiation resistance	2025
Scintillators	INSIDE	Development and Clinical Validation of an Online Hybrid Range Verification System – PET & Tracker		Completed – ongoing clinical trial
Si pixel + plastic scint.	PAPRICA	Online RVS based on pair production	Detector development	2024
LGAD + Scintillators	I3-PET	Online Hybrid RVS – UFSD & PET		Completed
LGAD + LaBr3 scintillators	MERLINO	Online Hybrid RVS – UFSD & Prompt photons – for the direct measurement of the Bragg curve	Time resolution DAQ rate	2024
T.B.D.	SIG	Design of the Online DDS & RVS for the CNAO Superconducting Ion Gantry	UFSD/LGAD radiation resistance and size Crystal time resolution	2025
I.C.	FRIDA/FlashDC	Online beam monitor for FLASH RT based on air fluorescence	Detector performance & design	2025
CZT scintillators	ENTER-BNCT	Online monitoring for BNCT	Detector development	2024
mixed	FOOT	Measurement of Target fragmentation at Particle Therapy Energies	Magnet – Calorimeter response vs fragment Z – TOF system	2023

ĪŃ