Nuclear Physics Mid Term Plan in Italy

LNF – Session

Frascati, December 1st - 2nd 2022

Detectors for medical applications: X-ray and Gamma imaging

Luca Brombal University of Trieste INFN - Trieste

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV
- 3. γ -ray detectors developments and applications @ and around INFN
 - γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and γ -ray spectrometer
 - SiPMs for Time of Flight PET @ FBK
 - Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV
- 3. γ -ray detectors developments and applications @ and around INFN
 - γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and γ -ray spectrometer
 - SiPMs for Time of Flight PET @ FBK
 - Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

2

- Planar radiography
- Computed Tomography (CT)
- Fluoroscopy

- Positron Emission Tomography (PET)
- Single Photon Emission Tomography (SPECT)

Nuclear Physics Mid Term Plan in Italy/ INFN

X-ray imaging detectors

- Energy range \rightarrow 10 150 keV
- High spatial resolution & large FOV
 → down to 100 µm & several cm²
- High flux → up to ~10⁹ ph/mm²/s in modern CT
- Photon-counting \rightarrow Higher soft tissue visibility
- Spectral \rightarrow Chemical information
- High efficiency \rightarrow Minimize the patient dose

γ imaging detectors

- Energy range \rightarrow 100 1000 keV
- High efficiency → "Few" events available
 ~10² counts/s
- High efficiency → minimize use of pharmaceuticals
- Time resolution → coincidence imaging in PET
- Low-cost wearable → long time-span measurements

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV
- 3. γ -ray detectors developments and applications @ and around INFN
 - γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and γ -ray spectrometer
 - SiPMs for Time of Flight PET @ FBK
 - Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI

- PIXIRAD (spinoff INFN-Pisa) developed hybrid detector for X-ray imaging based on PIXIE chip. Sold to PANalytical in 2017.
- Used in several bio-medical imaging applications within INFN-CSN5
 - SYRMA-CT/3D Syrnchrotron Radiation Mammography TS, BO, CA, FE, PI, NA
 - KEST K-Edge Spectral Tomography TS, PI
 - PEPI Photon-counting Edge-Illumination Phase-contrast Imaging TS

MAMMOGRAFIA CON

ana (IE)

Nuclear Physics

SYRMA-CT/3D (2014-2019)

- Development and optimization for phase-contrast breast-CT clinical trial @ Elettra
 - Large area CdTe single-photon-counting PIXIRAD-8 – PixieII chip

Photon-counting specific pre-preprocessing

Without pre-processing

With pre-processing

CT scan on a breast tissue surgical specimen @ Elettra

8

- 1200 angular vies projections
- X-ray energy: 32 keV
- Dose 20 mGy

INFN

Brombal, L., et al. Journal of synchrotron radiation 25.4 (2018): 1068-1077.

PIXIRAD1 – PixieIII chip

KEST (2017-2018) PEPI (2021 - 2022)

Detector characterization is critical in spectral imaging

10

KEST (2017-2019) PEPI (2021 - 2022)

VIDEO IN THE ORIGINAL PRESENTATION

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next-generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV
- 3. γ -ray detectors developments and applications @ and around INFN
 - γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and γ -ray spectrometer
 - SiPMs for Time of Flight PET @ FBK
 - Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

12

Medipix 4 collaboration

- INFN became official member of the Medipix4 Collaboration in November 2020
- Collaboration based at CERN with 18 members
- Two new ASICs produced:
 - Timepix4

4-side buttable large single-threshold particle tracking detector chip with improved energy and time resolution and with high-rate imaging capabilities

• Medipix4

Will target spectroscopic X-ray imaging at rates compatible with medical CT scans

13

Timepix4 ASIC specifications

- 4-side buttable pixel arrangement
- Target to build large area detectors by combining smaller modules
- The **Through-Silicon Vias (TSVs)** is the key technology for this paradigm shift

			Timepix3 (2013)	Timepix4 (2019)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixel Size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3	3.5x
Sensitive area			1.98 cm ²	6.94 cm ²	
	Data driven (Tracking)	Mode	TOT and TOA		
es		Event Packet	48-bit	64-bit <mark>3</mark>	3%
Noc		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s	0.7
nt D		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	δX
ope	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
Re		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm²/s	5 x
TOT energy resolution			< 2KeV	< 1Kev	2x
TOA binning resolution			1.56ns	195ps	8 x
TOA dynamic range			409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)	4x
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gb	32x
Target global minimum threshold			<500 e ⁻	<500 e⁻	

Nuclear Physics 1951 2021 info

Courtesy of M. Fiorini

MEDIPIX4 - CSN5 (2021-2023)

aimed at the exploitation of the family of application-specific integrated circuits (ASICs) developed by the Medipix4 Collaboration at CERN

5 INFN Division involved (FE, LNS, NA, PI, TS), National Resp: M. Fiorini (Ferrara University and INFN)

- WP1: Electronics/software/cooling (WP Leader: FE; Participating Groups: NA,PI)
- WP2: New sensors development (SiC, UV) (WP Leader: LNS; Participating Groups: Ferrara, LNS, Napoli) → see Giada Petringa's talk
- WP3: Dosimetry and Nuclear Medicine (WP Leader: NA, Participating Group: PI, LNS)
 - Nuclear Medicine Compact gamma camera (NA)
 - Dosimetry Gamma-ray detector for dosimetry and MV X-rays (NA), Diagnostic X-ray beams (PI), charged particles (LNS)
- WP4: X-ray imaging (WP Leader: Pisa; Participating Groups: FE, NA, PI and TS)
 - Spectral imaging (TS, PI, FE)
 - Phase Contrast Imaging (TS, NA)

Courtesy of M. Fiorini

European

Research Council

erc

Hybrid MCP development

- Hybrid vacuum photo-detector development
 - photocathode + MCP multiplication + Timepix4 anode in vacuum tube
 - Funded by ERC: 4DPHOTON (INFN, CERN, **UniFE**)
- Synergies with MEDIPIX4 CSN5 project:
 - Development of <u>FPGA-based read-out electronics</u> for the Timepix4 ASIC
 - Development of open-source control and data acquisition software
 - Strong expertise available to the INFN community

Current status

- First Timepix4_v2 bump-bonded assemblies (300 μm Si sensors, Advacam) available September 2022 and currently under test in Ferrara
- Software for slow-control and fast readout of Timepix4 under development in Ferrara, first release ready soon
- Production of assemblies with 0.5-2.0 mm CdTe sensors will be launched at the beginning of 2023

Future activities

- 2022 Medipix4 chip produced
- 2023 test of Timepix4 Si assembly + procurement of CdTe assembly
- Medipix4 assemblies production planned 2023

Courtesy of M. Fiorini

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next-generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV
- 3. γ -ray detectors developments and applications @ and around INFN
 - γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and γ -ray spectrometer
 - SiPMs for Time of Flight PET @ FBK
 - Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

18

PEROV (2020-2023)

- R&D for photodetectors based on Organo-Metal Halide Perovskite (OMHP) materials
- Involving LNF-INFN, INFN-Roma1, Universita' di Roma "La Sapienza", UniRoma2, UniMI, CNR

Courtesy of M. Testa – INFN LNF

INFN

19

OMHP are class of hybrid organic-inorganic semiconductor materials with a perovskite unit-cell structure ABX3 with:

• A = CH₃NH₃+, B = metallic cation (PB₂+), X = halide anions (Cl-, Br-, I-)

Organic semiconductors:

- Disordered system
- Localized electronic states
- Hopping transport ⇒ low mobility
- Low cost, low temperature processing
- Can be solution processed
- Scalable to large area

Inorganic semiconductors:

- Ordered periodic crystal ⇒ band structure
- Delocalized Bloch states
- band transport ⇒ high mobility
- Usually wafer based technology
- Costly, high temperature processes

		Silicon	CH₃NH₃Pb(I,Br)₃	
Density		2.33 g/cm ³	4.15 g/cm ³	
Band gap (e	V)	1.12 (indirect)	1.5-1.6 / 2.24 (direct)	•
Mobility	electrons	1400	< 70/190	
(cm²/Vs)	holes	450	< 160/220	•
Absorption	(cm⁻¹)	< 104	> 4x10 ⁴	
Threshold e impact ioniz	nergy for zation (eV)	1.2	~2 / 2.5 (estimated)	
Mean free p	oath (nm)	≤ 100	~100 (theory)	

OHMP band gap tunable changing halide (I,Br,Cl)

...

1

 OMHP contain highly mobile defects and have instabilities issues

(*) M. Testa,

I. Viola, L.De

Marco,

<u></u>≤

20

Typical dimension: W x L x H = $150 \mu m \times 500 \mu m \times 6(2) \mu m$ Production by CNR - Nanotec

perovskite micro-wires

- Device realized with CH₃NH₃PbBr deposition on patterned Indium Tin Oxide/ CH₃NH₃PbBr₃ and Au evaporation
 - Innovative technique
 - Deposited patent (INFN + CNR) 102022000010469 (*)
- Gain observed at larger bias for thickness of 2 and 6 um

Pro:

- large flexibility in dimension
- moderate area
- pixelization
- flexible substrate
- Deposited directly on substrate

Contra:

 need high optimization of parameters (pressure, temperature,..)

Detectors for medical applications: X-ray and gamma imaging

Goal: the feasibility of a hybrid X-ray detector ٠ structure combining a perovskite absorption Post-processed layer and a CMOS silicon active layer

- Principle: X-ray-generated electrons in the perovskite layer are transferred to silicon and collected by low-capacitance sensing sites coupled to in-pixel readout electronics
- The CMOS chips with an area of the order of 1cm² are available from ARCADIA INFN project

PRIN 2022 project proposal L.Pancheri, M. Testa, I.Viola

lavers

CMOS

Heterojunction

- On going activity: ٠
 - Test on deposition of perovskite microchannels through microfluidics technique on CMOS substrates with aluminium pads, used as passive substrates

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next-generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV

3. **y** -ray detectors developments and applications @ and around INFN

- + γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and γ -ray spectrometer
- SiPMs for Time of Flight PET @ FBK
- Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

22

Nuclear Physics

ISOLPHARM

- Aims at the production of wide set of high-purity radionuclides for diagnosis and therapy
- Uses the Isotope Separation On-Line (ISOL) technique @ LNL
- Many partners involved:
 - Within INFN: LNL, TIFPA, PD, PV, LNS, BO, PI
- Many activities including detector development:
 - Beta imaging (e.g. microscopy applications)
 - Gamma imaging (e.g., high-energy gamma camera)

High energy physics

Biomedical application

ALICE Inner Tracking System

Mager, M., and ALICE collaboration. *NIMA* 824 (2016): 434-438.

Pixel Sensor CMOS 180 nm Imaging Process (TowerJazz) 3 nm thin gate oxide, 6 metal layers

25

15 x 30 mm² area, 100% fill factor, 1-side pads (or pads over the matrix, but more difficult)

Courtesy of P. Giubilato – INFN LNL

Parameter	ALPIDE
Chip size (mm x mm)	15 x 30
Chip thickness (µm)	50 / 100
Spatial resolution (µm)	5
Detection efficiency	>99%
Fake hit rate	<< 10 ⁻⁶ (< <mark>10⁻⁸</mark>)
Integration time (µs)	< 6
Power density (mW/cm ²)	~40
Hit rate (cm ⁻²)	> 1 MHz
High-rate detection possible thanks to in-sensor data sparsification performed at pixel level	INFN
	Nuclear Physics 1951 2021 Mid Term Plan in Italy

26

Courtesy of P. Giubilato – INFN LNL

Production

Large scalability potential

- → Detector are produced with the same processes as in smartphones sensor
- \rightarrow Cheap (few USD per cm²)

Future

Stacked structure for 3D high granularity sensor for other medical applications

- \rightarrow X-ray detection
- \rightarrow Gamma detector (low energy)
- → Sensor for Photo Electron Emission Microscopy (PEEMS)

Compact and modular position-sensitive gamma detectors for medical and space applications

XGS, a compact and modular X and gamma-ray spectrometer with CsI scintillators and double-readout Silicon Drift Detectors with dedicated electronics for the THESEUS mission by ESA.

Layout of the XGS module

In the context of the **ISOLPHARM** project, a new gamma camera module optimized for the gamma radiation emitted by Ag-111 (main line 342 keV, 7%) will be developed during the next 3 years.

It foresees the modern GAGG scintillators already tested in Bologna as part of other projects (ASI HERMES nanosatellites), SiPM and fast readout electronics.

50 × 50 mm2 collimator used in an experimental γ-camera (INFN former Scintirad Project);

G. Baldazzi , INFN-BO

INFŃ

Nuclear Physics

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next-generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV

3. **y** -ray detectors developments and applications @ and around INFN

- γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and γ -ray spectrometer
- SiPMs for Time of Flight PET @ FBK
- Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

Luca Brombal

30

PET and ToF PET

Time-of-Flight (TOF) PET

Conventional PET

(a) nonTOF

(b) TOF, 527ps

(c) TOF, 210ps

Conti, Maurizio *Clinical and Translational Imaging* 7.2 (2019): 139-147.

Nuclear Physics Mid Term Plan in Italy

1951 2021 INFN

31

INFN

Nuclear Physics Mid Term Plan in Italy

SiPMs for PET @ FBK

State of the art PDE and noise

Gola, A et al. (2019). "NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler." *Sensors*, *19*(2), 308.

Optical crosstalk vs. PDE at 420 nm measured on NUV-HD-MT technology.

World-leading performance in PET

World record timing resolution: Single Photon Time resolution (SPTR, left) and Coincidence Resolving Time (CRT) in LYSO readout (right).

Courtesy of A. Gola– FBK

Development of large ToF-PET panels @ FBK

- 3D integration of SiPMs with TSV technology
- Development of 50x50 mm² PDMs to form *30x30 cm² ToF-PET panels*
- Used for limited-angle ToF-PET systems, for brain PET, Cardiac PET and full-body scanners.

Jožef Stefan Institute

Outline

- 1. X and γ -ray detection in medical imaging applications
- 2. X-ray detectors developments and applications @ INFN
 - Photon-counting and spectral imaging: SYRMA3D, KEST, PEPI
 - Next-generation hybrid pixel detector: MEDIPIX4
 - Innovative material/sensors: PEROV

3. **y** -ray detectors developments and applications @ and around INFN

- γ and β imaging detectors: synergy with ISOLPHARM
 - ALPIDE based detector for β -imaging
 - X and $\gamma\text{-}ray\,spectrometer$
- SiPMs for Time of Flight PET @ FBK
- Radiometabolic therapy and radioguided surgery
 - WIDIMapp: a Wearable Individual Dose Monitoring Apparatus
 - CHIRONE/CHIR2: Beta RadioGuided Surgery with β radiation

Luca Brombal

WIDMApp

- Wearable Individual Dose Monitoring Apparatus
- Rationale
 - Targeted Radionuclide Therapy (TRT) effectiveness is related to reconstruction of absorbed dose in lesions and OARs
- The device
 - Wearable multi-channel sensor for gamma and beta detection
 - Thin, lightweight, robust, biocompatible
- Innovation with respect to state of the art
 - Much high accuracy in dosimetry
 - Real treatment personalization
 - Massive logistical simplification with respect to standard of care
- Possible developments in the next 5 years
 - Tests on patients
 - Detector optimization
 - Detector engineering

35

VIDEO IN THE FINAL PRESENTATION

Istituto Nazionale di Fisica Nucleare Sezione di Roma

a Wearable Individual Dose Monitoring Apparatus

Received: 11 March 2021 Revised: 30 September 2021 Accepted: 11 October 2021

DOI: 10.1002/mp.15311

TECHNICAL NOTE

MEDICAL PHYSICS

Technical note: A wearable radiation measurement system for collection of patient-specific time-activity data in radiopharmaceutical therapy: system design and Monte Carlo simulation results

Silvio Morganti¹ | Francesco Collamati¹ | Riccardo Faccini^{1,2} | Giuseppe Iaccarino³ | Carlo Mancini-Terracciano^{1,2} | Riccardo Mirabelli^{1,2} | Francesca Nicolanti^{1,2} | Massimiliano Pacilio⁴ | Antonella Soriani³ | Elena Solfaroli-Camillocci^{1,2,3}

Nuclear Physics Mid Term Plan in Italy

CHIRONE (2014-2016) - CHIR2 (2017-2019)

- CHIRONE and CHIR2 projects involved INFN-RM1, INFN-PG
- Many other partners (also clinical):
 - IIT, Sapienza, ISS, IEO, Carlo Besta ...
- Goal:
 - Development of a β detector for radio-guided surgery
- Innovation with respect to state of the art:
 - Much more precise and accurate with respect to gamma-based technique
 - Allows radio guided surgery also in case of elevated background
 - Much handier detector, for example in robotic surgery
- Possible developments in the next 5 years:
 - Detector engineering beyond prototype
 - Extended tests on patients

37

Beta RadioGuided Surgery with B radiation

Standard use: y emitter + y probe
E.g. ⁹⁹Tc: E_y=140 keV

[1] A novel radioguided surgery technique exploiting β - decays, Camillocci ES et al., Sci Rep 2015;4:4401. doi:10.1038/srep04401

Courtesy of F. Collamati

38

Beta RadioGuided Surgery with B radiation

Courtesy of F. Collamati

39

Beta RadioGuided Surgery with B radiation

Ongoing activities:

- Feasibility studies of β-RGS with ¹⁸F
 - Cervical Cancer (18F-FDG)
- Monte Carlo simulations allowed to foresee probe counting due to signal and background;
- Experimental Studies on Detector characterization and optimization for ^{18}F $\beta+$ detection (endpoint 633 keV)
- First **in-vivo** tests with ⁶⁸Ga ongoing @IEO-Milan
 - Prostate Cancer (PSMA)
 - NETs (DOTATOC)
- **Results** are strongly **confirming** not only the technique **capabilities**, but also the **accuracy** of our previous **simulations**!

VIDEO IN THE FINAL PRESENTATION

Contributors list

- Luca Brombal (INFN-Trieste, Università di Trieste)
- Giuseppe Baldazzi (INFN-Bologna, Università di Bologna)
- Paolo Cardarelli (INFN-Ferrara)
- Francesco Collamati (INFN-Roma1)
- Massimiliano Fiorini (INFN-Ferrara, Università di Ferrara) •

- Piero Giubilato (INFN Padova, Università di Padova)
- Alberto Gola (FBK)
- Marcello Lunardon (INFN Padova, Università di Padova)
- Carlo Mancini Terracciano (INFN-Roma1, Università La Sapienza"
- Marianna Testa (INFN-LNS)

Conclusions and summary

That's not my job, this is the reason why we have conveners!

