**Nuclear Physics Mid Term Plan in Italy** 

LNF – Session

Frascati, December 1<sup>st</sup> - 2<sup>nd</sup> 2022



# Treatment monitoring and optimization

**Treatment monitoring** 

- Beam monitoring (x-y position and intensity)
- Range verification (depth)

**Treatment optimization** 

- Boron Neutron Capture Therapy (also monitoring)
- Target Nuclear fragmentation

**Piergiorgio Cerello** INFN, Sezione di Torino, Torino, Italy



**Nuclear Physics Mid Term Plan in Italy** 

LNF – Session

Frascati, December 1<sup>st</sup> - 2<sup>nd</sup> 2022



# **Treatment monitoring and optimization**

**Treatment monitoring** 

- Beam monitoring (x-y position and intensity)

**Piergiorgio Cerello** INFN, Sezione di Torino, Torino, Italy



# Beam monitoring in particle therapy

### **IONIZATION CHAMBERS**



Collection times ~ 100  $\mu$ s Sensitivity ~ 10<sup>4</sup> protons Time resolution ~ no/poor

Not suitable for fast scanning modalities and timing applications

### SOLID STATE DETECTORS



~ ns single protons < 100 ps

proton counting timing applications

Main issues at  $\phi = 10^{10} \text{ p/cm}^2 \text{s}$ 

- Signal pile-up
- $\rightarrow$  fast sensors & readout  $\rightarrow$  segmentation
- Radiation tolerance
- $\rightarrow$  manufacturing strategies

**Nuclear Physics** 

 $\rightarrow$  damage compensation

Courtesy of Roberto Sacchi

# Beam monitoring in particle therapy

### 2.7×2.7 cm<sup>2</sup> active area (144 strips)



Ve IT

**MOVEIT sensors** 



### R&D on Frontend readout and DAQ system

- 6 ABACUS front-end ASICs, 3 FPGA boards
- Counting rate up to 100 MHz with < 2% pileup inefficiency</li>
- For larger rates, inefficiency measurement implemented in FPGA

### R&D on new silicon detectors

- LGAD for proton beams
- thin planar silicon sensors for C ions

### Collaboration with INFN-EXFLU project



Supercon

Gantry

on

# Beam profiles measured at CNAO





### CARBON IONS Strip



Courtesy of Roberto Sacchi

Gantry

### Beam Time profile





INFN

5

# Beam Energy profile

Single hit time resolution: ~40 ps <  $\sigma$  < ~75 ps ...... Contribution to the error bar from nominal energy + 1 mm measured energy nergy + 0.5 mm 0.5 0 Mea -0.5 - 0.5 mm Vominal - 1 mm largest d = 95 cm -1.5 60 80 100 120 140 160 220 240 180 200 Nominal Energy [MeV] Supercond INFŃ  $\rightarrow$  ~ 1 ms active acquisition on Gantry **Nuclear Physics** 

most uniform beam time distribution -Flux: 10<sup>9</sup> protons/s

ToF statistical uncertainty < 1 ps can be achieved with 50k coincidences

 $\rightarrow$  ~ 3 s detector irradiation

**Nuclear Physics Mid Term Plan in Italy** 

LNF – Session

Frascati, December 1<sup>st</sup> - 2<sup>nd</sup> 2022



# **Treatment monitoring and optimization**

**Treatment monitoring** 

- Range verification (depth)

**Piergiorgio Cerello** INFN, Sezione di Torino, Torino, Italy



Nuclear Physics Mid Term Plan in Italy

### In-vivo range verification in particle therapy



Zhu X, Fakhri GE. Theranostics. 2013;3(10):731-740.

### In-vivo range verification in particle therapy

### Main clinical motivation: detection of inter-fractional morphological changes





Nuclear Physics Mid Term Plan in Italy – LNF Session

### In-vivo range verification: prompt gamma imaging





Measurement of the proton beam range in the patient in PBS mode

### **Camera configuration**

Knife-edge slit collimation and 1D detection of gamma-ray profiles

Collimator, software, positioning, project PI



Detector and Electronics





Clinical partner



and others...



Nuclear Physics Mid Term Plan in Italy

Courtesy of Carlo Fiorini

# clinical trial

### In-vivo range verification: prompt gamma imaging



500 cm<sup>3</sup> LYSO



SiPMs readout



Fig. 1. PGI slit camera trolley (upper row) and its application during patient treatment (lower row).



beam

Planning uncertainty > **5 mm** (margin of 3.5% + 2 mm) Measurement uncertainty (1.5σ)

≈ **2.0** mm



Nuclear Physics Mid Term Plan in Italy

C.Richter, et al., "First clinical application of a prompt gamma based in vivo proton range verification system", Rad. Onco. 2016;118:232–7. Y.Xie, et al., "Prompt gamma imaging for in vivo range verification of pencil beam scanning proton therapy", Int J Rad. Oncol Biol Phys 2017;99:210–8.

Courtesy of Carlo Fiorini

INFN

Nuclear Physics Mid Term Plan in Italy/



- **Dose Profiler**
- secondary protons
- carbon ion in-vivo verification







INFN

Nuclear Physics Mid Term Plan in Italy/

1951 2021





PET built @ INFN–Torino in January 2016



First test @ CNAO on February, 7<sup>th</sup>, 2016

Nuclear Physics Mid Term Plan in Italy – LNF Session

# Inside First clinical test @CNAO, 1-2 Dec. 2016



Carcinoma of the lacrimal gland 3.7 10<sup>10</sup> protons [66.3, 144.4] MeV/u (28-29)/30 fractions, 2.2 GyE Vertex field Dec, 1<sup>st</sup>

Dec, 2<sup>nd</sup>



V. Ferrero et al., "Online proton therapy monitoring: clinical test of a Silicon photo-detector based inbeam PET", Nature Scientific Reports **8**, Article number: 4100 (2018)

Nuclear Physics Mid Term Plan in Italy

### Treatment Monitoring



# in-beam Positron Emission Tomography

In-beam PET image - 21 fx



**Planning CT** 



**Control CT** 





Courtesy of Elisa Fiorina



10 cm

ClinicalTrials.gov NCT03662373

1951 2021 Mid Term Plan in Italy

# In-beam PET Dose comparison: Gamma analysis

- less sensitive than dose difference to high-dose-gradient regions
- clinically irrelevant features are smoothed out



### 0 ml vs 0 ml 0 ml vs 3.8 ml0 ml vs 7.3 ml 0 ml vs 13.1 ml





Patient: Squamous Cell Carcinoma (SCC) proton therapy, cavity emptying, CTV 40ml, 60 Gy Treatment and scanner simulated with FLUKA Monte Carlo code

• Image reconstruction with MLEM algorithm





### dose 3.00 Calculated $r \leq 1$ : pass > 1: fail Measured 2.75 2.50 Ad distance 2.25 Generally applied values are: $\Delta D = 3\%$ of dose maximum as dose-difference 2.00 $\Delta d = 3 mm$ as distance-to-agreement (DTA) T=Threshold, often 10% of max dose 1.75 1.50 1.25 1.00 Gamma index value **Nuclear Physics**

# Dose profiler

Detection of charged secondary fragments emitted @ large angle writ the beam direction



8 planes composed of 2 orthogonally oriented layers of plastic scintillating fibres SiPM read-out





🛃 Tracker (DP) PET heads

> Nuclear Physics Mid Term Plan in Italy

1951 2021 INFN



### Treatment Monitoring

Nuclear Physics Mid Term Plan in Italy – LNF Session



# Dose profiler



- 3D emission map of fragments collected during the treatment delivery
- Gamma test (9mm/10%) has been used for voxel to voxel comparison





ClinicalTrials.gov NCT03662373

CINFN

Nuclear Physics Mid Term Plan in Italy/

1951 2021

# *Inside* is unique, but it still has limitations

# **Incomplete PET ring**

- Bad resolution on the vertical coordinate
- Sub-optimal statistics

# Dose profiler not suitable for proton treatments

- no charged fragments



# The PAPRICA project

in-vivo monitoring of inter-fraction morphological variations with prompt photons (E > 4MeV) detection through the pair production mechanism

Prototype design (~ 5x20 cm<sup>2</sup> total surface)

**Converter: LYSO** fibres, 1.5x1.5x50 mm<sup>3</sup> each **Tracker**: 3 planes of **ALPIDE pixels** (27x29x100 μm<sup>3</sup>) **Calorimeter: EJ-200** plastic scintillator rods, 6x6x50 mm<sup>3</sup> each





**Expected performance** from FLUKA Monte Carlo simulation, on patients from the INSIDE clinical trial





PAPRICA spots morphological variations

- in 2/2 replanned patients
- in 0/4 not replanned patients



Courtesy of Ilaria Mattei

### Innovative In-beam Imaging: the I3PET project

monitoring of Positron Emitters & Prompt Photons with the same PET detector



### **Prompt Gamma Timing (PGT)**

Integration and synchronization of the beam monitoring system with range verification detectors



INFŃ

Nuclear Physics Mid Term Plan in Italy

### Innovative In-beam Imaging: the I3PET project

### monitoring of Positron Emitters & Prompt Photons with the same PET detector



4x Hamamatsu 64 channels commercial PET modules

TETRATOFPET2 board

3D printed cover

Copper dissipator for water cooling



### Innovative In-beam Imaging: the I3PET project

monitoring of Positron Emitters & Prompt Photons with the same PET detector



### MERLINO: From PGT to stopping power!



### MERLINO: From PGT to stopping power!





### 227 MeV protons on PMMA Beam average rate 10<sup>7</sup> pps







### Treatment Monitoring

Piergiorgio Cerello

### MERLINO: From PGT to stopping power!







### Data vs. simulation



1951 2021 Nuclear Physics Mid Term Plan in Italy

INFN

### MERLINO: From PGT to stopping power!



### SiPM tile developed by FOOT collaboration (FBK): 5x5 channels

| SIPM Type  |                |                 | Tile            |         |       |  |
|------------|----------------|-----------------|-----------------|---------|-------|--|
| Technology | Cell size (µm) | SiPM size (mm²) | Tile size (mm²) | # SiPMs | Resin |  |
| RGB-HD     | 15             | 16              | 24x24           | 25      | Epoxy |  |





Board by M. Mignone: sum of channels output



SiPM signal: rise time ~5 ns, total duration ~80 ns

PMT signal is about 13 times higher than SiPM signal at the same LED intensity

### SiPM gain (value by FBK): 4E5



Nuclear Physics

**Courtesy of Veronica Ferrero** 

INFN

Nuclear Physics Mid Term Plan in Italy/

1951 2021

### MERLINO: From PGT to stopping power!



### SiPM tile developed by FOOT collaboration (FBK): 5x5 channels

| SiPM Type  |                |                 | Tile            |         |       |
|------------|----------------|-----------------|-----------------|---------|-------|
| Technology | Cell size (µm) | SiPM size (mm²) | Tile size (mm²) | # SiPMs | Resin |
| RGB-HD     | 15             | 16              | 24x24           | 25      | Epoxy |





Board by M. Mignone: sum of channels output

MER





# Superconducting Ion Gantry



study, design and test the prototype of the in-vivo RVS for the SIG ion gantry
design a full system that meets the clinical requirements

### ...from...





...towards...



**Courtesy of Elisa Fiorina** 

INFN

# Superconducting Ion Gantry





**Courtesy of Elisa Fiorina** 

# Superconducting Ion Gantry







Single spot 144.10 MeV/u (inter spill)



# Superconducting Ion Gantry







2D scanning 178.28 MeV/u (after treatment)



**Nuclear Physics** 

# Fluorescence-based beam monitor for FLASH RT

Real time beam monitoring (intensity and direction) is required Standard detectors (i.e., ionization chambers) not suitable in FLASH regime

- discharges
- dose-dependent effects



- air fluorescence to detect electron current and measure its characteristics
- emission of optical photons from molecular excitation with an almost constant yield over a wide energy range
- air as a medium minimizes the material thickness on the beam line



# Fluorescence-based beam monitor for FLASH RT



- Proof of principle using the ElectronFlash machine, by Sordina IORT Technologies S.p.A.
- air volume (2x2x60 cm<sup>3</sup>) enclosed by a thin layer of tedlar, light sensors on the edges





# Fluorescence-based beam monitor for FLASH RT



Dose: Gy / pulse

- Optimize the light detection system to make it more stable and precise, and reduce the risk of saturation
- Optimize design with MC simulations
- Aim: monitor the intensity of typical FLASH pulses making a 2D mapping of the beam with a spatial resolution ≈mm



**Nuclear Physics Mid Term Plan in Italy** 

LNF – Session

Frascati, December 1<sup>st</sup> - 2<sup>nd</sup> 2022



# **Treatment monitoring and optimization**

**Piergiorgio Cerello** INFN, Sezione di Torino, Torino, Italy

**Treatment optimization** 

- Boron Neutron Capture Therapy



Nuclear Physics Mid Term Plan in Italy – LNF Session

# Boron Neutron Capture Therapy (BNCT)

- neutron flux on <sup>10</sup>B-enriched target tissue
- high LET secondaries produced in  ${}^{10}B(n,\alpha)^{7}Li$
- highly effective at cell level





# BNCT dosimetry: the present limit

"therapeutic" dose due to <sup>10</sup>B accumulation  $dD(x,y,z) \sim n_{10B}(x,y,z) \cdot \Phi(x,y,z) dV$ 

- thermal neutron flux @ tumour site
- <sup>10</sup>B distribution @ irradiation time

are presently measured indirectly - huge uncertainties on dose estimation



Courtesy of Nicoletta Protti

measurements

Planning Systems (TPS) validated

through TE-phantom

Monte Carlo-based Treatment

### Treatment Monitoring

# in vivo BNCT dosimetry by single photon detection "therapeutic" dose dD(x,y,z) ~ $n_{B10}(x,y,z) \cdot \Phi(x,y,z)dV \sim dI_{Y}(x,y,z)$



### **Challenges:**

- mechanical collimator effective @ 478 keV
- intense n+γ background (2.2 MeV γ rays from <sup>1</sup>H captures)
- compact and portable system to adapt to patient's position



Real time measurement of <sup>10</sup>B reaction rate

- multiple detectors = multiple projections
- BNCT-SPECT or Compton Camera
  - voxel size < 1 cm<sup>3</sup>
  - statistical uncertainty < 10% @478 keV</li>

Nuclear Physics

-  $^{10}B$  reaction rate >  $10^{6}$  cm<sup>-3</sup>s<sup>-1</sup>

Nuclear Physics Mid Term Plan in Italy – LNF Session

# BENEdiCTE (Boron Enhanced NEutron CapTurE)



Nuclear Physics Mid Term Plan in Italy – LNF Session

# SPECT and Compton Imaging

CdZnTe room-temperature semiconductor detectors: the cutting-edge technology for small field of view scanners

DoseCapture modules for BNCT-SPECT (ENTER-BNCT project INFN + UNIPV Dipartimento di Eccellenza)

"single stage" Compton Camera 3D CZT detectors (3CaTS project)



**Courtesy of Nicoletta Protti** 

(i) an array of 4 Frisch Grid (FG) CZT detectors

(ii) <sup>6</sup>Li-enriched neutron shield surrounding the array to reduce the  $(n,\gamma)$ reactions of <sup>113</sup>Cd (~12% natural abundance)

(iii) a square 4 holes Pb collimator to select the photon direction

(iv) proprietary digital electronics for acquisition, correction and analysis



S.Fatemi et al., NIM-A 903: 134-139 (2018)

L. Abbene et al., J Synchrotron Rad 27: 1564-1576 (2020) L. Abbene et al., Sensors 22:1502 (2022) **Nuclear Physics Mid Term Plan in Italy** 

LNF – Session

Frascati, December 1<sup>st</sup> - 2<sup>nd</sup> 2022



# **Treatment monitoring and optimization**

### **Piergiorgio Cerello** INFN, Sezione di Torino, Torino, Italy

**Treatment optimization** 

- Nuclear fragmentation



Nuclear Physics Mid Term Plan in Italy – LNF Session



FragmentatiOn Of Target (FOOT)

# Particle therapy: E < 500 MeV/u

# IMRT7d Global Max = 1198 cGy Global Max = 1198 cGy Sprot Global Max = 1051 cGy Global Max =

the contribution of tissue fragmentation in the entrance channel was not measured (yet)



**Inverse** kinematics

INFN

Nuclear Physics Mid Term Plan in <u>Italy</u>/

1951 2021

# **Emulsion Spectrometer\***



- Large acceptance
- Low statistics

\*already covered by L. Servoli

# **Electronic Spectrometer**





INFN

(1951 2021 Nuclear Physics

- Forward acceptance (~ 11 degrees)
- High statistics

# **BGO** Calorimeter







 $ADC(E) = aE^2 / (1 + bE + cE^2)$ 

| $E_{fit} - E_{ADC}$ | / ${\rm E}_{\rm fit}$ | < | 1% |  |
|---------------------|-----------------------|---|----|--|
|---------------------|-----------------------|---|----|--|



(1951 2021

Nuclear Physics

Mid Term Plan in Ital

INFN

A (Z?) dependence

Beam energy (MeV/u)

# Time of Flight & dE/dx – Z resolution

CNAO 2019 data: p,<sup>12</sup>C Coincidence Time Resolution



### GSI 2021 data 400 MeV/u <sup>16</sup>O on 5mm carbon



# dE/dx vs. Energy – A resolution

Heidelberg2022 Data taking: <sup>4</sup>He + <sup>12</sup>C



Courtesy of Roberto Zarrella

INFN

Nuclear Physics

Mid Term Plan in Italy

1951 2021

# **Trigger** Fragmentation events are at a level of few $\% \rightarrow$ how to enhance them?

TOF-Wall VETO Region 160 Start Counter 160 GSI2021 data





### <sup>16</sup>O rejection factor $11.8 \pm 0.1$

Piergiorgio Cerello

# Contributions by:

Nazar Bartosik Veronica Ferrero Elisa Fiorina Carlo Fiorini Luca Galli Aafke Kraan Ilaria Mattei Matteo Morrocchi Francesco Pennazio Nicoletta Protti **Roberto Sacchi** Alessio Sarti Valentina Sola **Roberto Zarrella** 

### on behalf of their teams / collaborations

CINFN

Nuclear Physics Mid Term Plan in <u>Italy</u>/

(1951 2021

# Summary: Key issues for the near future

- Beam monitoring

silicon detectors radiation resistance and size

- Range Verification

direct Bragg peak measurement: time of flight resolution

PAPRICA

pair-production air fluorescence

- Boron Neutron Capture Therapy SPECT & Compton imaging

- Fragmentation

cross section measurements: time of flight resolution, energy in the non-linear regime, magnet & silicon tracker





Piergiorgio Cerello

ENTER-BNCT,

3CaTS





Nuclear Physics





Nuclear Physics Mid Term Plan in Italy – LNF Session