A new era of hadron physics measurements

Otón Vázquez Doce Frascati, December 1st, 2022

A combined effort...

...with a great opportunity

Unprecedented precise data to constraint of state of the art models (EFT) and...

- Study coupled-channel systems and new molecular states
- **Constraint the Equation of State** of neutron stars
- **Test first principle calculations** in their preferred framework
- Search for new bound states: 2-baryon systems beyond the deuteron and more

Hadron-hadron strong interactions

Residual strong interaction among hadrons

 $\mathcal{L}_{EFT}[\pi, N, \ldots; m_{\pi}, m_N, \ldots, C_i]$

Effective theories (EFT)

- Hadrons as degrees of freedom
- Low-energy EFT coefficients constraint by data

Hadron-hadron strong interactions

Residual strong interaction among hadrons

 $\mathcal{L}_{EFT}[\pi, N, \ldots; m_{\pi}, m_N, \ldots, C_i]$

Effective theories (EFT)

- Hadrons as degrees of freedom
- Low-energy EFT coefficients constraint by data

 $\mathcal{L}_{QCD}[q,\overline{q},A;m_q,\alpha_s]$

Lattice QCD

- Understanding of the interaction starting from **quark and gluons**

Hadron-hadron interactions

100

(with strangeness)

S=0 S=-1 S=-2 $NN \rightarrow NN$ $\Lambda p \rightarrow \Lambda p$ **Kaonic atoms** $\Lambda\Lambda$, Ξ hypernuclei 300 x10² 1.5 1.5 1.0 (a) K-p Ka EM value ${}^{3}P_{0}$ Sechi-Zorn et al. o Kadyk et al. Alexander et al. 200 ----- Argonne v18 np σ (mb) --- Argonne v18 pp ----- Argonne v., nn Bugg-Bryan np 92 Nijmegen np 93 ပိ Nijmegen pp 93 10 1 1 Energy [keV] 7 ♦ Henneck np 93 100 + VPI&SU np 94 6→5 5→4 8→7 TI K_α TI K_β YG 12 K⁻C 7→5 × VPI&SU pp 94 £ 1 9 ė Ň Cu | K^c 0.2 ACO ACO 10 µm 100 200 300 400 E_{lab} (MeV) SIDDHARTA Coll. Phys.Lett.B 704 (2011) 113 R. B. Wiringa, V. G. J. Stoks, R. Schiavilla Phys. Rev. C 51, 38 (1995)

200 300 400 500 600 700 800 900 p_{lab} (MeV/c)

NLO: J. Haidenbauer et al., Nucl. Phys. A915 (2013) 24.

LO: H. Polinder, J. Haidenbauer, U. Meißner, Nucl. Phys. A779 (2006) 244.

KISO event: K. Nakazawa et al., Prog. Theor. Exp. Phys. 2015, 033D02 IBUKI event J-PARC E07 Coll., Phys. Rev. Lett. 126, 062501 (2021)

Experimental data

15

10

-5

-10

-15

-20 Ó O

S(deg)

The case of the antiKaon-Nucleon interaction

Kaon and antiKaon interactions with nucleons are totally different

Chiral Perturbation Theory (Weinberg, Gasser, Leutwyler) is not applicable

- mass of the strange quark: m_s > m_u,m_d
- appearance of the Λ(1405) below (and close to) threshold

Theoretical models should:

- make predictions below threshold
- <u>describe</u> (the nature of) <u>the $\Lambda(1405)$ </u>

Connected many hot topics:

- Strong coupled channel dynamics KN-Σπ Y. Kamiya et al., Phys. Rev. Lett. 124, 132501 (2020)
- Kaonic bound states (case of KNN) JPARC E15, PLB 789 (2019) 620
- Strangeness in NS: kaon condensate <u>D.Logoteta Universe 2021, 7(11), 408</u>
- Enhanced production of strangeness with multiplicity <u>T. Song @ SQM2021</u>

Theoretical approaches to antiK-N

- Lattice QCD... in the near future!
- meson exchange
- phenomenological
- chiral SU(3) dynamical

Data is crucial to test (+feed) this approaches.

Data fitting by Chiral SU(3).

- Going to NLO (N²LO?), s+p waves \Rightarrow more parameters to be fixed (by data)
- Adding **new data** helps to improve the model
- Adding more precise data helps to improve the model
- Adding data at different energies helps to improve the model

Next to leading order (NLO), just considering the contact term

A. Feijoo @ HYP2022

Theoretical a

- Lattice QCD... in th
- meson exchange
- phenomenological
- chiral SU(3) dynan

Data is crucial to test (+

 $\mathcal{L}_{\phi B}^{(2)} = b_D \langle \bar{B}\{\chi_+, B\} \rangle + b_F \langle \bar{B}[\chi_+, B] \rangle + b_0 \langle \bar{B}B \rangle \langle \chi_+ \rangle + d_1 \langle \bar{B}\{u_\mu, [u^\mu, B]\} \rangle \\ + d_2 \langle \bar{B}[u_\mu, [u^\mu, B]] \rangle + d_3 \langle \bar{B}u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B}B \rangle \langle u^\mu u_\mu \rangle \\ - \frac{g_1}{8M_N^2} \langle \bar{B}\{u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]\} \rangle - \frac{g_2}{8M_N^2} \langle \bar{B}[u_\mu, [u_\nu, \{D^\mu, D^\nu\}B]] \rangle \\ - \frac{g_3}{8M_N^2} \langle \bar{B}u_\mu \rangle \langle [u_\nu, \{D^\mu, D^\nu\}B] \rangle - \frac{g_4}{8M_N^2} \langle \bar{B}\{D^\mu, D^\nu\}B \rangle \langle u_\mu u_\nu \rangle \\ - \frac{h_1}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]Bu_\mu u_\nu \rangle - \frac{h_2}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]u_\mu[u_\nu, B] \rangle - \frac{h_3}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]u_\mu\{u_\nu, B\} \rangle \\ - \frac{h_4}{4} \langle \bar{B}[\gamma^\mu, \gamma^\nu]u_\mu \rangle \langle u_\nu, B \rangle + h.c.$

test (+ • $b_0, b_D, b_F, d_1, d_2, d_3, d_4, g_1, g_2, g_4, h_1, h_2, h_3, h_4$ are not well established, so they should be treated as parameters of the model!

Data fitting by Chiral SU(3).

- Going to NLO (N²LO?), s+p waves \Rightarrow more parameters to be fixed (by data)
- Adding new data helps to improve the model
- Adding more precise data helps to improve the model
- Adding data at different energies helps to improve the model

Available experimental data

antikaonic hydrogen: SIDDHARTA

10

antikaonic hydrogen: SIDDHARTA

shift(ϵ), width(Γ) with respect to e.m. value caused by attractive/repulsive strong interaction and the presence of inelastic channels

Measurement of the shift(ϵ) and width(Γ) induced by the strong interaction in the lowest level atomic transition.

SIDDHARTA Coll., PLB 704 (2011) 113 $\epsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$ $\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV},$

Translated via Desser-type Formula into a **K**⁻**p scattering length** that is an average of the KbarN scattering lengths for I=0 and I=1

$$\epsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^3 \mu_c^2 a_p (1 - 2\alpha \mu_c (\ln \alpha - 1)a_p)$$
$$a_{K^- p} = \frac{a_0 (I = 0) + a_1 (I = 1)}{2}$$

AMADEUS: K⁻ absorption in ⁴He and ¹²C

KLOE used as an active target

- DC wall (750 µm C foil , 150 µm Al foil);
- DC gas (90% He, 10% C₄H₁₀).

+

pure sample of K⁻¹²C absorptions at-rest

AMADEUS: K⁻ absorption in ⁴He and ¹²C

KLOE used as an active target

- DC wall (750 µm C foil , 150 µm Al foil);
- DC gas (90% He, 10% C₄H₁₀).

+

pure sample of K⁻¹²C absorptions at-rest

$K^- + A \rightarrow Yp + A'$

Multi-nucleon absorption processes dominate

AMADEUS Coll. PLB 758 (2016) 134 AMADEUS Coll. PLB 782 (2018) 339 AMADEUS Coll. FBS 62 (2021) 7.

<u>Below threshold (-33 MeV) $K^{-}n \rightarrow \pi^{-}\Lambda$ (I=1 non resonant)</u>

$$|A_{K^{-}n
ightarrow\Lambda\pi^{-}}|=(0.334\pm0.018~{
m stat}^{+0.034}_{-0.058}{
m syst})~{
m fm}.$$

AMADEUS Coll., PLB 782 (2018) 339-345]

AMADEUS-type data is a hot topic

<u>J. Haidenbauer @ FemTUM 2022</u>

d scattering

 Λd scattering experiments are practically impossible however, one can study the Λd system as final-state interaction:

- Heavy ion collisions
 Ad correlations measured in Ni+Ni collisions
 FOPI Collaboration (Norbert Herrmann, 2012)
- $K^- A \rightarrow A' \wedge d$ $\wedge d$ invariant mass spectrum FINUDA Collaboration, 2007

 K^{-4} He→ $n \wedge d$: KEK-PS E549 Collaboration, 2007 AMADEUS Collaboration (c. Curceanu, O. Vazquez Doce, 2012-14)

- $pd \rightarrow K^+ \Lambda d$ Λd invariant mass spectrum COSY, Jülich, 2012 – but not yet analyzed
- Ad two-particle momentum correlations in *pp* collisions ALICE Collaboration

してい 山 ふかく 山 マ ふし く む マ く む マ

Johann Haidenbauer Hyperon-nucleon interaction

E. Oset @ HYP 2022

How to learn about the Kbar N amplitude below threshold and the $\Lambda(1405)?$

 K^{-}

The photonuclear data provides information.

K-3He $\rightarrow \Lambda p n$

 $K^{\text{-}} p \ \rightarrow \ \pi^0 \pi^0 \Sigma^0$

EoS of dense symmetric nuclear matter

W. Weise @ HYP 2022

 \mathbf{M}

 $\overline{\mathbf{M}_{\odot}}$

1

Tolman - Oppenheimer - Volkov Equations $G (\mathcal{E} + P)(M + 4\pi Pr^3)$ $r^2 = r(r - 2GM/c^2)$ $\frac{\mathrm{d}\mathbf{M}}{\mathrm{d}\mathbf{r}} = 4\pi\mathbf{r^2}\frac{\mathcal{E}}{\mathbf{c^2}}$ Stiff equation-of-state $\mathbf{P}(\mathcal{E})$ required

Simple forms of exotic matter (kaon condensate, quark matter, ...) ruled out

D. Logoteta @ EXOTICO 2022

GWs spectrum with hyperons and without

D. Radice et al. ApJL 842 L10 (2017)

4 A 1

Domenico Logoteta Equation of state for neutron stars and binary neutron star mergers

Avaliable KbarN scattering data

A. Ramos @ QNP2022

Lorentz-invariant formulation of chiral effective field theory (LO) Ren, Epelbaum, Gegelia, Meißner, EPJC (2021)

Extension to higher energies (LO+NLO): Feijoo, Magas, Ramos, PRC 2019

Bruns, Cieplý, NPA 2022

and higher partial waves:

Feijoo, Gazda, Magas, Ramos, Symmetry 2021

KN interaction

- The present knowledge of total and differential cross sections of low energy kaon-nucleon reactions is very limited.
- Below 150 MeV/c the experimental data are very scarce and with large errors and practically no data exist below 100 MeV/c.

AMADEUS KbarN inelastic scattering

⇒ The most recent AMADEUS result has been submitted to PRL. arXiv:2210.10342 [nucl-ex]

First Simultaneous $\mathbf{K}^{-}\mathbf{p} \rightarrow (\Sigma^{0}/\Lambda) \pi^{0}$ Cross Sections Measurements at 98 MeV/c

 $\sigma_{K^-p\to\Sigma^0\pi^0} = 42.8 \pm 1.5(stat.)^{+2.4}_{-2.0}(syst.) \text{ mb}$ $\sigma_{K^-p\to\Lambda\pi^0} = 31.0 \pm 0.5(stat.)^{+1.2}_{-1.2}(syst.) \text{ mb},$

KNscat - KNint @ DAΦNE: Kbar-N scattering and interaction

As presented to the Sci. Com. 2021:

https://arxiv.org/pdf/2104.06076.pdf

Fundamental physics at the strangeness frontier at $DA\Phi NE$. Outline of a proposal for future measurements.

Towards a LOI (authors: Editorial Board only)

19

Nucleus-Nucleus collisions at the LHC recorded by ALICE

Nucleus-Nucleus collisions at the LHC recorded by ALICE

Nucleus-Nucleus collisions at the LHC recorded by ALICE

Experimental observable: Correlation function of two final-state particles

$$C(k^*) = \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)} \xrightarrow{} \text{Pairs of particles from same collison} \xrightarrow{} \text{Pairs of particles from same collisions}$$

$$k^* = \frac{|\vec{p}_a^* - \vec{p}_b^*|}{2}$$

relative momentum in pair rest frame

$$C(k^*) = \int \frac{S(\boldsymbol{r}^*) |\psi(\boldsymbol{k}^*, \boldsymbol{r}^*)|^2}{\text{source wave function}} \, \mathrm{d}^3 \boldsymbol{r}^*$$

Lisa, Pratt, Wiedemann, Solz, Ann. Rev. Nucl. Part. Sci. 55 (2005) 357

$$C(k^*) = \int \frac{S(\boldsymbol{r}^*) |\psi(\boldsymbol{k}^*, \boldsymbol{r}^*)|^2}{\text{source wave function}} \, \mathrm{d}^3 \boldsymbol{r}^*$$

Lisa, Pratt, Wiedemann, Solz, Ann. Rev. Nucl. Part. Sci. 55 (2005) 357

pp, p–Pb: r*~1fm Pb–Pb: r*~3-10fm

$$C(k^*) = \int \frac{S(\boldsymbol{r}^*) |\psi(\boldsymbol{k}^*, \boldsymbol{r}^*)|^2}{\text{source wave function}} \, \mathrm{d}^3 \boldsymbol{r}^*$$

Lisa, Pratt, Wiedemann, Solz, Ann. Rev. Nucl. Part. Sci. 55 (2005) 357

$$C(k^*) = \int S(r^*) |\psi(k^*, r^*)|^2 d^3r^*$$
Source wave function
Lise. Prat. Wedemann, Solz, Ann. Rev. Nucl. Part. Sol. 55 (2005) 357
$$\int C > 1 \Rightarrow \text{ Attractive interaction}$$

$$C < 1 \Rightarrow \text{ No interaction}$$

$$C < 1 \Rightarrow \text{ Repulsive interaction}$$

$$C < 1 \Rightarrow \text{ Repulsive interaction}$$

$$k^*$$

$$pp, p-Pb: r^*~1fm$$

$$Pb-Pb: r^*~3-10fm$$

KbarN Femtoscopy with ALICE

<u>Well known</u> K⁺p interaction ⇒ experimental determination of the source size

Jülich meson exchange model Eur. Phys. J. A47, 18 (2011)

KbarN Femtoscopy with ALICE

<u>K p femtoscopy:</u>

SIDDHARTA result

Test of Kyoto potential anchored to

K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201

Small systems: pp collisions r~1fm

⇒ Provides a quantitative test of coupled channels in the theory Effects of coupled channels enhanced by small source

Jülich meson exchange model Eur. Phys. J. A47, 18 (2011)

n_{o stat}

28

KbarN Femtoscopy with ALICE

<u>K p femtoscopy:</u>

Test of Kyoto potential anchored to

K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201

Small systems: pp collisions r~1fm

⇒ Provides a quantitative test of coupled channels in the theory
 Effects of coupled channels enhanced by small source

Jülich meson exchange model Eur. Phys. J. A47, 18 (2011)

KbarN at threshold and low momentum

The overlap of the kaon wavefunction with the nucleon delivers insight into the effects of the strong interaction, competing with Coulomb effects

Deliver different observables ←⇒ scattering lengths can be obtained from both (via Deser-type and Lednický–Lyuboshitz formulae)

K⁻p Femtoscopy with ALICE in Pb-Pb collisions

ALICE Coll., PLB 822 (2021) 136708

Femtoscopy results up to |S| = 3

S = -1, p- Λ Femtoscopy test Chiral SU(3)

Upcoming: Accessing KbarN I=1 interaction

⇒ Full isospin dependence needs K⁻d interaction measurements:

SIDDHARTA2:
$$a_{K^-d} = \frac{1}{2} \frac{m_N + m_K}{m_N + \frac{m_K}{2}} (3a_1 + a_0) + C$$

... and femtoscopy with deuterons with ALICE

K⁻d femtoscopy with ALICE

Femtoscopy measurements with deuterons are indeed very challenging

- deuterons are expensive... penalty factor of 1/1000 w.r.t. protons
- K⁺d correlation function to be used as reference

K⁻d femtoscopy with ALICE

Femtoscopy measurements with deuterons are indeed very challenging

- deuterons are expensive... penalty factor of 1/1000 w.r.t. protons
- K⁺d correlation function to be used as reference
- Enriched physics case: formation of deuterons in hadronic collisions

K⁻d femtoscopy with ALICE

Femtoscopy measurements with deuterons are indeed very challenging

- deuterons are expensive... penalty factor of 1/1000 w.r.t. protons
- K⁺d correlation function to be used as reference
- Enriched physics case: formation of deuterons in hadronic collisions
- Enriched physics case: three-body interactions

Three-body femtoscopy

Study of three-particle correlations

Three-particle correlation function:

$$C(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}) \equiv \frac{P(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3})}{P(\mathbf{p}_{1}) P(\mathbf{p}_{2}) P(\mathbf{p}_{3})} = \frac{N_{\text{same }}(Q_{3})}{N_{\text{mixed }}(Q_{3})}$$

$$Q_{3} = \sqrt{-q_{12}^{2} - q_{23}^{2} - q_{31}^{2}}$$

$$p_{1}$$

$$p_{2}$$

$$p_{3}$$

Three-body femtoscopy

Study of three-particle correlations

Three-particle correlation function:

 $C(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}) \equiv \frac{P(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3})}{P(\mathbf{p}_{1}) P(\mathbf{p}_{2}) P(\mathbf{p}_{3})} = \frac{N_{\text{same }}(Q_{3})}{N_{\text{mixed }}(Q_{3})}$

$Q_{3} = \sqrt{-q_{12}^{2} - q_{23}^{2} - q_{31}^{2}}$ p_{1} p_{2} p_{2}

⇒ Direct access to the genuine three-body forces via Kubo cumulant method

R. del Grande et al., arXiv:2107.10227 [nucl-th]

Preliminary ALICE data \Rightarrow

Important constraints for the calculations of Kaonic nuclear states and multi-nucleonic absorptions

The Mid-term plan

	~ 1 year	~ 1-3 years	~ 3-5 years
DAPHNE: Kaonic Atoms	- SIDDHARTA2: kaonic deuterium - High Z kaonic atoms	- Light and Heavy Kaonic Atoms Measurements - Kaon Mass	- Intermediate + Ultra-high Kaonic Atoms Measurements
DAPHNE: Kaon scattering	- Publication of high impact results with KLOE data $K^{-}p \rightarrow \Sigma^{0}\pi^{0} / \Lambda \pi^{0}$	- Additional channels and/or statistics from KLOE/KLOE-2 data?	 TPC setup to study elastic/inelastic scattering → beyond 5 years!
ALICE: Femtoscopy	- K⁺d with Run2 as reference measurement	- K ⁻ d with LHC Run-3 data - K ⁻ p improved precision	- Full exploit of LHC Run-3 data with three-body femtoscopy

...and the competition / complementary approaches

JPARC: Ξ -atoms spectroscopy, $\Sigma^{\pm}p$ low E scattering, systematic studies on Kaonic Nuclei, etc. **KLong facility at Jefferson Lab:** beam of K_L mesons + GlueX spectrometer **RHIC / STAR**: Finalization of Femtoscopic analysis of Au-Au data.

Outlook

Precision studies of the strong interaction between hadrons at the LNF

- **Exotic atoms** experiments enter a **new era** with SIDDHARTA2 and the future plans at DAΦNE
- Femtoscopy studies at the LHC updates the scenario of the experimental studies on hadron-hadron interactions

 \Rightarrow The extension of the program for the hadron interaction with strangeness faces many challenges

- Very different experimental techniques will provide **complementary approaches**
- The expected results will **deliver a difficult test to the theoretical approaches**
- The project is evolving and can be extended

THANK YOU VERY MUCH!