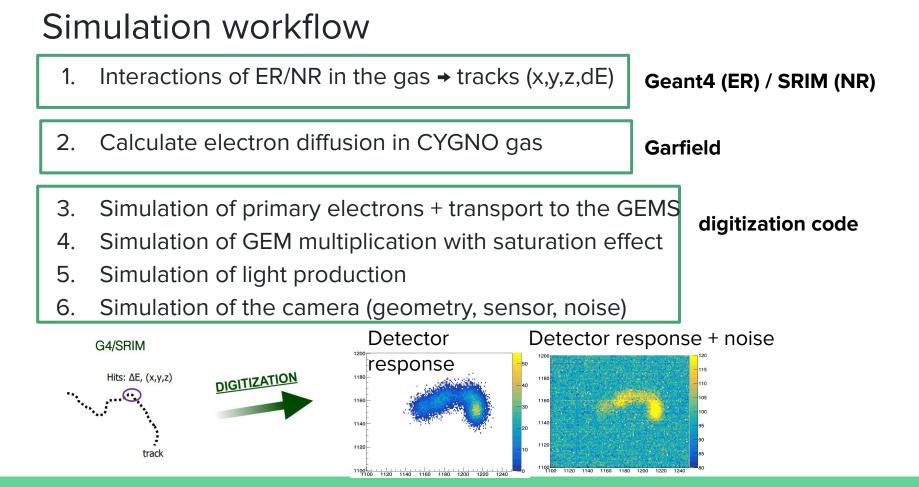


CYGNO simulation plans

Giulia D'Imperio

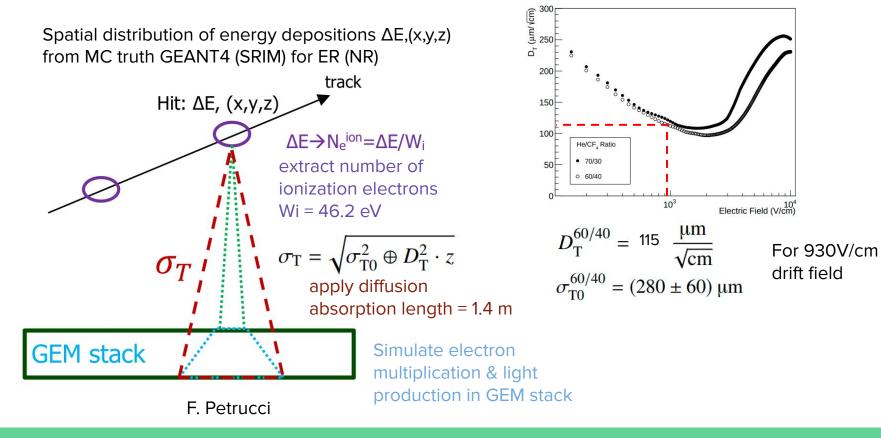
19/09/22 CYGNO simulation meeting

Simulation progress of last months

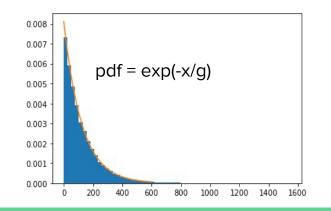

- LIME background simulations
 - finalized shielding design for LIME underground
 - completed background simulations (energy spectrum, no hits information)
 - finalized plans for LIME measurements and MC validation
- CYGNO background simulations and ER simulations
 - full simulation for CYGNO 1m3, background for CYGNO_04 estimated from scaling
- NR simulations
 - completed framework ready using SRIM
 - improved QF simulation

• Digitization

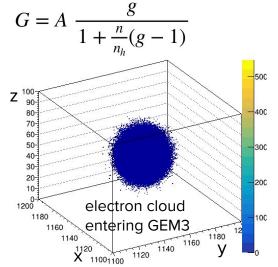
- introduced saturation
- done many data/MC comparison and found the best set of parameters to reproduce data
- improved/optimized the code


Plans & to do

- LIME background simulations
 - to be validated with LIME data underground
 - full simulation of tracks (including hits info in the output file + digitization)
- CYGNO background simulations and ER simulations
 - to do full background simulation using latest design
- NR simulations
 - produce high statistic samples to study CYGNO performance
- Digitization
 - produce high statistic samples to study CYGNO performance
- PMT simulations
 - finalize PMT simulations and integrate in digitization code



Simulation of primary electrons

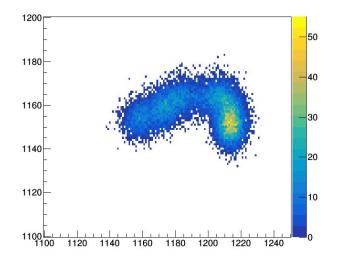

GEM gain simulation

- Single GEM gain parameterized as a function of HV (portugues group measurement)
- Extraction x Collection efficiency of electrons in GEM1 and GEM2: 0.33
- Gain fluctuations:
 - \circ Gain of 1st GEM (G1) is extracted from an exponential distributions and multiplied by $\epsilon_{extr} \times \epsilon_{coll}$
 - G2 from parameterization vs HV
 - G3 add saturation effect

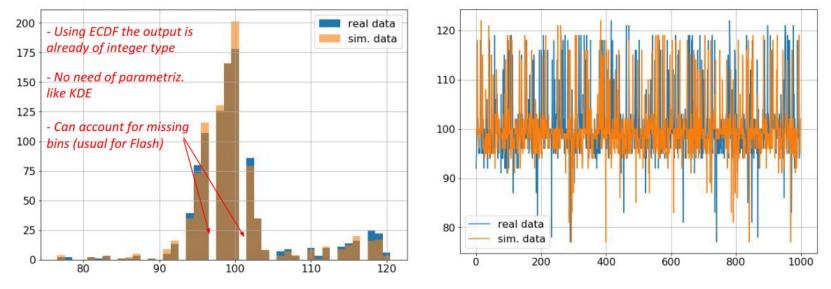
Saturation simulation (only GEM3)

- Simulate the 3D cloud of electrons entering GEM3:
 - \circ spatial smearing given by σ_{oT} , σ_{T} and σ_{oI} , σ_{I} and drift distance z
 - divide electron cloud in voxels 152(x) x 152(y) x 100(z) μ m³
 - apply formula of saturated gain in each voxel

Parameters of saturations tued with comparison with ⁵⁵Fe data:

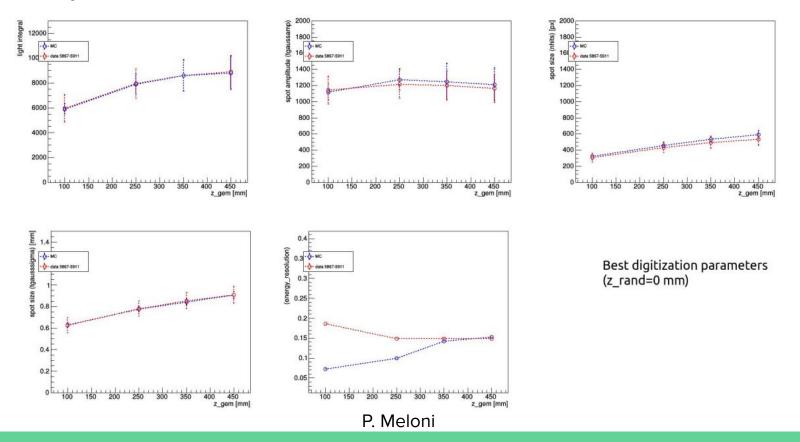

- A = 1.47 (free parameter of the model)
- beta 1e-5

Simulation of light production

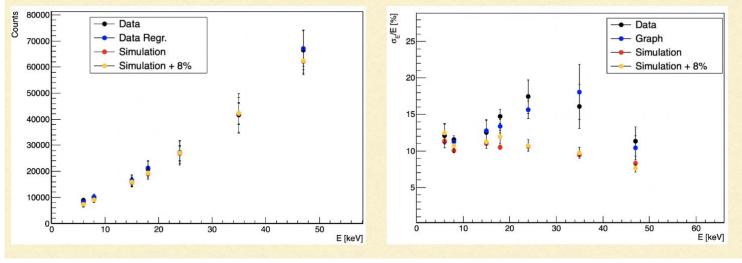

- ORCA Fusion:
 - 2304 x 2304 pixels
 - Camera aperture 0.95
 - Sensor size 14.976 mm
 - Sensor calibration \rightarrow 1 photon = 2 sensor counts
- Active area: 34.6 cm x 34.6 cm (for LIME)
- Diffusion parameters from

https://arxiv.org/pdf/2007.00608.pdf

- sigmaT0 : 350 um, sigmaT : 0.11 mm/sqrt(cm)
- sigmaL0 : 260 um, sigmaL : 0.099 mm/sqrt(cm)
- Geometry factor of light collection: $\Omega = 1/(4(d+1)^*a)^2$
 - d = ratio between image size (346 mm) and sensor size (14.976 mm)
 - \circ a = camera aperture (0.95)


Simulation of camera noise Simulation using ECDF

Pixel (1,6) Flash sensor run 2054


R. Nobrega

Comparison with ⁵⁵Fe data z scan

Comparison vs data xray sources

- Data < 300 px
- Regressed data < 300 px
- Simulation with fluctuation before sensor + vignetting < 300 px
- Simulation with fluctuation before sensor + vignetting + 8% gaussian fluctuation on electron exiting from GEM 3 (overall fluctuation to take into account variation on GEM 2 and GEM 3)

S. Torelli

Who does what?

• LIME background simulations

- to be validated with LIME data underground
- full simulation of tracks (including hits info in the output file + digitization)
- CYGNO background simulations and ER simulations
 - to do full background simulation using latest design
- NR simulations
 - produce high statistic samples to study CYGNO performance
- Digitization
 - produce high statistic samples to study CYGNO performance
- PMT simulations
 - finalize PMT simulations and integrate in digitization code

Flaminia, Giulia +?

Giulia +?

Flaminia +?

Samuele + ?

Mariana, Rafael +?

INFN Cloud

- We should move simulation workflow to INFN cloud
 in principle easier to upgrade resources (cpu, storage)
- Geant4 simulation tested on cloud and working
- Condor queues tested and working
- Digitization not yet tested but in principle possible
- Reconstruction tested...?

The best is to do all the steps (simulation+analysis) on the cloud